SUPPLEMENT TO “POSTERIOR CONTRACTION AND CREDIBLE SETS FOR FILAMENTS OF REGRESSION FUNCTIONS”

BY WEI LI AND SUBHASHIS GHOSAL

North Carolina State University

The supplementary file contains proofs for Lemma 5.7, 8.1, and 8.4.

Proof of Lemma 5.7. Let \(x_0 \) be an arbitrary point on \(\hat{\mathcal{L}} \). Thus \(\Upsilon_{x_0}(0) = x_0 \in \hat{\mathcal{L}} \) and \(\Upsilon_{x_0}(t_{x_0}) \in \mathcal{L} \) for some \(t_{x_0} > 0 \). Note that \(\inf_{y \in \mathcal{L}} \| x_0 - y \| \leq \| \Upsilon_{x_0}(0) - \Upsilon_{x_0}(t_{x_0}) \| \leq t_{x_0} \) as \(\| V(x) \| = 1 \). Let
\[
D_{\Upsilon_{x_0},V} f(t) := \frac{d}{dt} f(\Upsilon_{x_0}(t)) = \nabla f(\Upsilon_{x_0}(t))^T V(\Upsilon_{x_0}(t))
\]
and
\[
D^2_{\Upsilon_{x_0},V} f(t) := \langle \nabla \langle \nabla f(\Upsilon_{x_0}(t)), V(\Upsilon_{x_0}(t)), V(\Upsilon_{x_0}(t)) \rangle \nabla f(\Upsilon_{x_0}(t))^T V(\Upsilon_{x_0}(t)) + V(\Upsilon_{x_0}(t))^T H f(\Upsilon_{x_0}(t)) V(\Upsilon_{x_0}(t)),
\]
where the second line is due to the chain rule. A Taylor expansion yields that
\[
D_{\Upsilon_{x_0},V} f(t) - D_{\Upsilon_{x_0},V} f(t_{x_0}) = (t - t_{x_0}) D^2_{\Upsilon_{x_0},V} f(\tilde{t})
\]
for some \(\tilde{t} \) between 0 and \(t_{x_0} \). In particular, since \(D_{\Upsilon_{x_0},V} f(t_{x_0}) = 0 \), letting \(t = 0 \), we obtain
\[
D_{\Upsilon_{x_0},V} f(0) = -t_{x_0} D^2_{\Upsilon_{x_0},V} f(\tilde{t}).
\]
Furthermore,
\[
|D_{\Upsilon_{x_0},V} f(0)| = |D_{\Upsilon_{x_0},V} f(0) - D_{\Upsilon_{x_0},V} \hat{f}(0)|
\]
\[
= |\nabla f(\Upsilon_{x_0}(0))^T V(\Upsilon_{x_0}(0)) - \nabla \hat{f}(\Upsilon_{x_0}(0))^T \hat{V}(\Upsilon_{x_0}(0))|
\]
\[
\leq \sup_x |\nabla f(x)^T V(x) - \nabla \hat{f}(x)^T \hat{V}(x)|
\]
\[
\leq \sup_x |\nabla f(x)^T (V(x) - \hat{V}(x))| + \sup_x |(\nabla f(x) - \nabla \hat{f}(x))^T \hat{V}(x))|
\]
\[
\leq C \sup_x \| V(x) - \hat{V}(x) \| + \sup_x \| \nabla f(x) - \nabla \hat{f}(x) \|
\]
\[
\leq C \sup_x \| V(x) - \hat{V}(x) \|.
\]
By the uniform continuity of \(\nabla f(x), \nabla V(x), V(x) \) and \(H f(x) \) and the continuity of \(\Upsilon_{x_0}(t) \) in \(t \), without loss of generality, we can make \(t_{x_0} \) small enough
The rate for sup $\|\nabla f(t)\|$ inequality this, if Assumption (A5) holds for the x noting the highest degree of derivatives in each expression. We shall show small.

By Assumption (A3), $|D_{x_0}^2 V f(t_0)| > \eta$, and hence

$$|D_{x_0}^2 V f(t_0)| > \eta/2.$$

Therefore, $\inf_{y \in \mathcal{L}} \|x_0 - y\| \leq t_0 < \frac{C}{\eta} \sup_x \|V(x) - \hat{V}(x)\|$. Thus $d(\hat{L}|\mathcal{L}) \leq \frac{C}{\eta} \sup_x \|V(x) - \hat{V}(x)\|$. Similarly, $d(\mathcal{L}|\hat{L}) \leq \frac{C}{\eta} \sup_x \|V(x) - \hat{V}(x)\|$. Therefore, Haus($\mathcal{L}, \hat{L}$) $\leq \frac{C}{\eta} \sup_{x \in \{0,1\}^2} \|V(x) - \hat{V}(x)\|$. Recall that $V(x) = G(df^2(x))$.

Now since G is a fixed Lipschitz continuous function, it is easy to get the upper bound for $\sup_{x \in \{0,1\}^2} \|V(x) - \hat{V}(x)\|$ in terms of the supremum distance of the derivatives of $f(x) - \hat{f}(x)$.

In the proof, t_{x_0} can be made arbitrarily small in the limit. To see this, if Assumption (A5) holds for the f (or more precisely, Υ_{x_0}), then $\|\Upsilon_{x_0}(t_{x_0}) - \hat{\Upsilon}_{x_0}(t_{x_0})\| = \|\Upsilon_{x_0}(t_{x_0}) - x_0\| = \|\Upsilon_{x_0}(t_{x_0}) - \Upsilon_{x_0}(0)\| > C_d t_{x_0}$. Since $\|\Upsilon_{x_0}(t_{x_0}) - \hat{\Upsilon}_{x_0}(t_{x_0})\|$ can be made arbitrarily small due to the closedness in supremum norm (see previous theorems), t_{x_0} can be made arbitrarily small.

Proof of Lemma 8.1. These results can be directly adapted from [1] by noting the highest degree of derivatives in each expression. We shall show the rates for $\sup_x \|H f(x) - H f^*(x)\|_F$, $\sup_x \|\nabla d^2 f(x) - \nabla d^2 f^*(x)\|_F$, and $\sup_x \|\nabla V(x) - \nabla V^*(x)\|_F$. Notice that

$$\|H f(x) - H f^*(x)\|_F = \left(|f(2,0) - f^*(2,0)|^2 + 2|f(1,1) - f^*(1,1)|^2 \right)^{1/2},$$

$$\leq 2^{-1/2} \left(|f(2,0) - f^*(2,0)| + 2|f(1,1) - f^*(1,1)| \right).$$

The rate for $\sup_x \|H f(x) - H f^*(x)\|_F$ then follows easily.

Also, the contraction rates for $\|\nabla d^2 f(x) - \nabla d^2 f^*(x)\|_F$ follows from the inequality $\|\nabla d^2 f(x) - \nabla d^2 f^*(x)\|_F \leq 6^{-1/2} \sum_{r:|r|=3} |D^r f(x) - D^r f^*(x)|$.
Since $\nabla V(x) - \nabla V^*(x) = \nabla G(d^2 f(x))\nabla d^2 f(x) - \nabla G(d^2 f^*(x))\nabla d^2 f^*(x)$, which is 2 by 2 matrix, straightforward calculation gives its $(1,1)$ element
\[
\begin{align*}
&\left(G_1^{(1,0,0)}(d^2 f(x))f^{(3,0)}(x) - G_1^{(1,0,0)}(d^2 f^*(x))f^{*(3,0)}(x)\right), \\
&+ \left(G_1^{(0,1,0)}(d^2 f(x))f^{(2,1)}(x) - G_1^{(0,1,0)}(d^2 f^*(x))f^{*(2,1)}(x)\right), \\
&+ \left(G_1^{(0,0,1)}(d^2 f(x))f^{(1,2)}(x) - G_1^{(0,0,1)}(d^2 f^*(x))f^{*(1,2)}(x)\right).
\end{align*}
\]

The absolute value of the first summand is bounded by the sum of
\[
\left|G_1^{(1,0,0)}(d^2 f(x))f^{(3,0)}(x) - G_1^{(1,0,0)}(d^2 f^*(x))f^{*(3,0)}(x)\right|
\]
and
\[
\left|G_1^{(1,0,0)}(d^2 f(x))f^{*(3,0)}(x) - G_1^{(1,0,0)}(d^2 f^*(x))f^{*(3,0)}(x)\right|.
\]

Noting that $d^2 f(x)$ contracts to $d^2 f^*(x)$ uniformly in x, hence $\{d^2 f(x) : x \in [0,1]^2\} \subset Q_8$ with posterior probability tending to 1, the first term is bounded by a constant multiple of $|f^{(3,0)}(x) - f^{*(3,0)}(x)|$, in view of the result 4 of Remark 8.1. By the same remark and assumption $\|f^*\|_{0, \infty} < \infty$, the second term is bounded by $\|d^2 f(x) - d^2 f^*(x)\||f^{(3,0)}(x)|$. Using similar arguments for the second and third summand, one can see that the absolute value of the $(1,1)$ element of $\nabla V(x) - \nabla V^*(x)$ is bounded by $|f^{(3,0)}(x) - f^{*(3,0)}(x)| + |f^{(2,1)}(x) - f^{*(2,1)}(x)| + |f^{(1,2)}(x) - f^{*(1,2)}(x)|$.

Dealing the rest elements of $\nabla V(x) - \nabla V^*(x)$ similarly, we can see that $\|\nabla V(x) - \nabla V^*(x)\|_F \lesssim \sum_{|r|=3} |D^r f - D^r f^*|$. \hfill \Box

Proof of Lemma 8.4. We shall consider only two separate cases (i) $r = (2, 0)$ and (ii) $r = (1, 1)$.

(i). For $r = (2, 0)$ (similarly for $r = (0, 2)$),
\[
\|a(x_0, t)\|_1 = \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left|\int_0^t \tilde{G}_1(s)B_{j_1}''(\Upsilon_{1,x_0}^*(s))B_{j_2}(\Upsilon_{2,x_0}^*(s))ds\right|
\lesssim \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \int_0^t |B_{j_1}''(\Upsilon_{1,x_0}^*(s))|B_{j_2}(\Upsilon_{2,x_0}^*(s))ds
\leq \sum_{j_1}^{J_1} \int_0^t |B_{j_1}''(\Upsilon_{1,x_0}^*(s))|ds,
\]
the last line follows by \(\sum_{j_2 = 1} B'_{j_2}(x_2) = 1 \) and noticing that

\[
B''_{j_1,q_1}(x) = \frac{(q_1 - 1)(q_1 - 2) B_{j_1,q_1-2}(x)}{(t_{j_1} - t_{j_1-1})(t_{j_1} - t_{j_1-2})} + \frac{(q_1 - 1)(q_1 - 2) B_{j_1-1,q_1-2}(x)}{(t_{j_1-1} - t_{j_1-2})(t_{j_1-1} - t_{j_1-3})},
\]

which implies \(\sum_{j_1 = 1} B''_{j_1} \mid \mathcal{Y}_{x_0}(s) \mid \leq 4J^2 \). Therefore, \(\|a(x_0,t)\|_1 \lesssim J^2 \).

Next, let \(S_{j_1} = [t_{1,j_1 - (q_1 - 2)}, t_{1,j_1}], S_{j_2} = [t_{2,j_2 - q_2}, t_{2,j_2}] \) and \(1_{j_1,j_2}(s) := 1 \{ s : \mathcal{Y}_{x_0}(s) \in S_{j_1} \times S_{j_2} \} \). Turn to \(\|a(x_0,t)\|_2^2 \), which is

\[
\sum_{j_1 = 1}^J \sum_{j_2 = 1}^J \left(\int_0^t \bar{G}_1(s) B''_{j_1} \mid \mathcal{Y}_{1,x_0}(s) \mid B_{j_2} \mid \mathcal{Y}_{2,x_0}(s) \right) ds \leq 4J^2.
\]

The last equality is obtained as follows. Since for any fix \(j_1, j_2, B''_{j_1} \cdot \) is supported on \(S_{j_1} \) and \(B_{j_2}(\cdot) \) is supported on \(S_{j_2} \). So \(1_{j_1,j_2}(s) \) is supported on \(S_{j_1} \times S_{j_2} \) and \(\mathcal{Y}_{x_0}(s) \in S_{j_1} \times S_{j_2} \).

Notice that for \(n \) large, \(|S_{j_1}| \times |S_{j_2}| \lesssim J^{-1} \) and \(\mathcal{Y}_{x_0}(s) \in S_{j_1} \times S_{j_2} \). Notice that for \(n \) large, \(|S_{j_1}| \times |S_{j_2}| \lesssim J^{-1} \) and \(\mathcal{Y}_{x_0}(s) \in S_{j_1} \times S_{j_2} \).

By Assumption (A5), \(C_0 |s - s'| \leq |s - s'| \) implies that \(\| \mathcal{Y}_{x_0}(s) - \mathcal{Y}_{x_0}(s') \| \lesssim J^{-1} \), and hence \(|s - s'| \lesssim J^{-1} \). Therefore, for \(n \) large enough, above quantity can be further bounded by a constant multiple of

\[
\int_0^t \int_0^t \sum_{j_1 = 1}^J \sum_{j_2 = 1}^J 1 \{ |s - s'| < CJ^{-1} \} \left(|B''_{j_1} \mid \mathcal{Y}_{1,x_0}(s) \mid B_{j_2} \mid \mathcal{Y}_{2,x_0}(s) \right) ds ds'.
\]
Noting \(B_{j_2}(x_2) \leq 1 \) and \(\sum_{j_2=1}^{J_2} B_{j_2} = 1 \), it can be further bounded by

\[
\begin{align*}
\int_0^t \int_0^t \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} 1 \{ |s - s'| < CJ^{-1} \} & \left(|B''_{j_1}(\Upsilon_{1,x_0}^*(s))| B_{j_2}(\Upsilon_{2,x_0}^*(s)) \right) \\
& \times |B''_{j_1}(\Upsilon_{1,x_0}^*(s'))| \right) dsds' \\
& \lesssim \int_0^t \int_0^t \sum_{j_1=1}^{J_1} 1 \{ |s - s'| < CJ^{-1} \} \left(|B''_{j_1}(\Upsilon_{1,x_0}^*(s))| B''_{j_1}(\Upsilon_{1,x_0}^*(s')) \right) dsds' \\
& \lesssim J^2 J^{-1} \int_0^t \sum_{j_1=1}^{J_1} |B''_{j_1}(\Upsilon_{1,x_0}^*(s))| ds.
\end{align*}
\]

From argument used in bounding \(\|a(x_0,t)\|_1 \), we have \(\sum_{j_1=1}^{J_1} |B''_{j_1}(\Upsilon_{1,x_0}^*)| \lesssim J^2 \). This completes the proof for \(\|a(x_0,t)\|_2 \lesssim J^3 \).

For the third result, we write

\[
\|a(x_0,t) - a(\tilde{x}_0,\tilde{t})\|^2 \lesssim \|a_1(x_0,t,\tilde{t})\|^2 + \|a_2(\tilde{t},x_0,\tilde{x}_0)\|^2,
\]

where

\[
a_1(x_0,t,\tilde{t}) := \int_0^t \tilde{G}(\Upsilon_{x_0}^*(s)) b_{j_1,j_2}(\Upsilon_{x_0}^*(s)) ds - \int_0^{\tilde{t}} \tilde{G}(\Upsilon_{x_0}^*(s)) b_{j_1,j_2}(\Upsilon_{x_0}^*(s)) ds,
\]

and

\[
a_2(\tilde{t},x_0,\tilde{x}_0) := \int_0^{\tilde{t}} \tilde{G}(\Upsilon_{x_0}^*(s)) b_{j_1,j_2}(\Upsilon_{x_0}^*(s)) ds - \int_0^{\tilde{t}} \tilde{G}(\Upsilon_{\tilde{x}_0}^*(s)) b_{j_1,j_2}(\Upsilon_{\tilde{x}_0}^*(s)) ds.
\]

First, note that

\[
\|a_1(x_0,t,\tilde{t})\|^2 = \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^t \tilde{G}(\Upsilon_{x_0}^*(s)) B''_{j_1}(\Upsilon_{1,x_0}^*(s)) B_{j_2}(\Upsilon_{2,x_0}^*(s)) ds \right)^2 \lesssim J^2 J^{-1} \int_0^{\tilde{t}} (4J^2) ds = J^3 |t - \tilde{t}|,
\]

where the second line follows by a similar argument used to bound \(\|a(x_0,t)\|^2 \). Next, \(\|a_2(\tilde{t},x_0,\tilde{x}_0)\|^2 \) is given by

\[
\sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left[\int_0^{\tilde{t}} \left(\tilde{G}(\Upsilon_{x_0}^*(s)) B''_{j_1}(\Upsilon_{1,x_0}^*(s)) B_{j_2}(\Upsilon_{2,x_0}^*(s)) \right) \right. \\
\left. - \tilde{G}(\Upsilon_{\tilde{x}_0}^*(s)) B''_{j_1}(\Upsilon_{1,x_0}^*(s)) B_{j_2}(\Upsilon_{2,x_0}^*(s)) ds \right]^2,
\]
which is bounded (up to a multiple constant) by

\[
\sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\ell \tilde{G}(\Upsilon_{x_0}(s)) \left(B''_{j_2} (\Upsilon_{1,x_0}(s)) - B''_{j_1} (\Upsilon_{1,\tilde{x}_0}(s)) \right) B_{j_2} (\Upsilon_{2,x_0}(s)) ds \right)^2 \\
+ \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\ell \tilde{G}(\Upsilon_{x_0}(s)) \left(B_{j_2} (\Upsilon_{2,x_0}(s)) - B_{j_2} (\Upsilon_{2,\tilde{x}_0}(s)) \right) B''_{j_1} (\Upsilon_{1,x_0}(s)) ds \right)^2 \\
+ \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\ell \tilde{G}(\Upsilon_{x_0}(s)) - \tilde{G}(\Upsilon_{\tilde{x}_0}(s)) \right) B''_{j_1} (\Upsilon_{1,x_0}(s)) B_{j_2} (\Upsilon_{2,x_0}(s)) ds \right)^2.
\]

Bound the first term in the right hand side of above expression as

\[
\sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\ell \tilde{G}(\Upsilon_{x_0}(s)) \left(B''_{j_1} (\Upsilon_{1,x_0}(s)) - B''_{j_1} (\Upsilon_{1,\tilde{x}_0}(s)) \right) B_{j_2} (\Upsilon_{2,x_0}(s)) ds \right)^2 \\
\lesssim \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\ell |\tilde{G}(\Upsilon_{x_0}(s))||B''_{j_1} (\Upsilon_{1,x_0}(s))||\Upsilon_{1,x_0}(s) - \Upsilon_{1,\tilde{x}_0}(s)| \\
\times B_{j_2} (\Upsilon_{2,x_0}(s)) ds \right)^2 \\
\lesssim \|x_0 - \tilde{x}_0\|^2 \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\ell |\tilde{G}(\Upsilon_{x_0}(s))||B''_{j_1} (\Upsilon_{1,x_0}(s))| B_{j_2} (\Upsilon_{2,x_0}(s)) ds \right)^2 \\
\lesssim \|x_0 - \tilde{x}_0\|^2 J^2 \int_0^\ell |B''_{j_1} (\Upsilon_{1,x_0}(s))| ds \\
\lesssim \|x_0 - \tilde{x}_0\|^2 J^5.
\]

The second term is bounded as

\[
\sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\ell \tilde{G}(\Upsilon_{x_0}(s)) \left(B_{j_2} (\Upsilon_{2,x_0}(s)) - B_{j_2} (\Upsilon_{2,\tilde{x}_0}(s)) \right) B''_{j_1} (\Upsilon_{1,x_0}(s)) ds \right)^2 \\
\lesssim \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\ell |\tilde{G}(\Upsilon_{x_0}(s))||\Upsilon_{2,x_0}(s) - \Upsilon_{2,\tilde{x}_0}(s)||B'_{j_2} (\Upsilon_{2,x_0}(s))| |B''_{j_1} (\Upsilon_{1,x_0}(s))| \right)^2 \\
\lesssim \|x - \tilde{x}_0\|^2 \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\ell |\tilde{G}(\Upsilon_{x_0}(s))||B'_{j_2} (\Upsilon_{2,x_0}(s))||B''_{j_1} (\Upsilon_{1,x_0}(s))| \right)^2
\]
\begin{equation*}
\lesssim \|x - \tilde{x}_0\|^2 \int_0^t \mathbb{1}\{ |s - s'| \leq CJ^{-1} \} \times \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} |B'_{j_2}(\Upsilon^*_{2, \tilde{x}_0}(s))| |B''_{j_1}(\Upsilon^*_{1, \tilde{x}_0}(s))| |B''_{j_2}(\Upsilon^*_{2, \tilde{x}_0}(s'))| dsds' \\
\lesssim \|x - \tilde{x}_0\|^2 \int_0^t \mathbb{1}\{ |s - s'| \leq CJ^{-1} \} J^2 \sum_{j_1=1}^{J_1} |B''_{j_1}(\Upsilon^*_{1, \tilde{x}_0}(s))| |B''_{j_2}(\Upsilon^*_{2, \tilde{x}_0}(s'))| dsds' \\
\lesssim J^5 \|x_0 - \tilde{x}_0\|^2,
\end{equation*}

where the second line follows from the mean value theorem, the third line from the Lipschitz continuity of $\Upsilon^*_{x_0}$ in x_0 (Remark 8.1) and fourth line by a similar argument used to bound $\|a(x, t)\|^2$. The third term

\begin{equation*}
\sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^t \left(\tilde{G}(\Upsilon^*_{x_0}(s)) - \tilde{G}(\Upsilon^*_{\tilde{x}_0}(s)) \right) B''_{j_1}(\Upsilon^*_{1, \tilde{x}_0}(s)) B_{j_2}(\Upsilon^*_{2, \tilde{x}_0}(s)) ds \right)^2 \\
\lesssim \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \int_0^t \left(\|\Upsilon^*_{x_0}(s) - \Upsilon^*_{\tilde{x}_0}(s)\|^2 B''_{j_1}(\Upsilon^*_{1, \tilde{x}_0}(s)) B_{j_2}(\Upsilon^*_{2, \tilde{x}_0}(s)) ds \right)^2 \\
\lesssim \|x_0 - \tilde{x}_0\|^2 J^3,
\end{equation*}

where the second line holds by mean value theorem and the third line holds due to Lipschitz continuity of $\Upsilon^*_{x_0}$ in x_0 (Remark 8.1) and last line holds by similar argument for $\|a(x_0, t)\|^2$.

In summary, we have that $\|a_2(\tilde{t}, x_0, \tilde{x}_0)\| \lesssim J^5 \|x_0 - \tilde{x}_0\|^2$ and $\|a_1(x_0, t, \tilde{t})\| \lesssim J^3 |t - \tilde{t}|$.

(ii). Now turning to the case $r = (1, 1)$. By similar argument we have

\begin{equation*}
\|a(x_0, t)\|_1 = \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left| \int_0^t \tilde{G}_1(s) B'_{j_1}(\Upsilon^*_{1, x_0}(s)) B'_{j_2}(\Upsilon^*_{2, x_0}(s)) ds \right| \\
\lesssim \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \int_0^t |B'_{j_1}(\Upsilon^*_{1, x_0}(s))| |B'_{j_2}(\Upsilon^*_{2, x_0}(s))| ds \\
\leq J \sum_{j_1=1}^{J_1} \int_0^t |B'_{j_1}(\Upsilon^*_{1, x_0}(s))| ds \lesssim J^2
\end{equation*}
Likewise, \(\|a(x_0, t)\|^2 = \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^t \tilde{G}(s) B_{j_1}^t (Y_{1,x_0}^* (s)) B_{j_2}^t (Y_{2,x_0}^* (s)) ds \right)^2 \) can be bounded by

\[
\int_0^t \int_0^t \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} 1 \{|s-s'| < C J^{-1}\} \left(|B_{j_1}^t (Y_{1,x_0}^* (s))| B_{j_2}^t (Y_{2,x_0}^* (s)) \right) ds ds' \leq J \int_0^t \int_0^t \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} 1 \{|s-s'| < C J^{-1}\} \left(|B_{j_1}^t (Y_{1,x_0}^* (s))| |B_{j_2}^t (Y_{2,x_0}^* (s))| \right) ds ds' \leq J^2 \int_0^t \int_0^t \sum_{j_1=1}^{J_1} 1 \{|s-s'| < C J^{-1}\} \left(|B_{j_1}^t (Y_{1,x_0}^* (s))| \right) ds ds' \leq J^3 J^{-1} \int_0^t \sum_{j_1=1}^{J_1} |B_{j_1}^t (Y_{1,x_0}^* (s))| ds
\]

which is bounded by a constant multiple of \(J^3 \).

The third result \(\|a_1(x_0, t, \tilde{t})\|^2 \leq J^3 |t-\tilde{t}| \) and \(\|a_2(\tilde{t}, x, \tilde{x}_0)\|^2 \leq J^5 \|x_0 - \tilde{x}_0\|^2 \) can be derived in a similar manner, since

\[
\|a_1(x_0, t, \tilde{t})\|^2 = \sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^{\tilde{t}} \tilde{G}(Y_{x_0}^* (s)) B_{j_1}^t (Y_{1,x_0}^* (s)) B_{j_2}^t (Y_{2,x_0}^* (s)) ds \right)^2 \leq J^2 J^{-1} \int_0^{\tilde{t}} (4J^2) ds
\]

which equals to \(J^3 |t-\tilde{t}| \); where the second line follows by a similar argument used in bounding \(\|a(x_0, t)\|^2 \).

Next, to bound \(\|a_2(\tilde{t}, x_0, \tilde{x}_0)\|^2 \), we need to estimate the following three terms

\[
\sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^{\tilde{t}} \tilde{G}(Y_{x_0}^* (s)) \left(B_{j_1}^t (Y_{1,x_0}^* (s)) - B_{j_1}^t (Y_{1,\tilde{x}_0}^* (s)) \right) B_{j_2}^t (Y_{2,x_0}^* (s)) ds \right)^2,
\]
\[\sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\tilde{t} \tilde{G}(\tilde{Y}_{x_0}(s)) \left(B'_{j_2} (\tilde{Y}_{2,x_0}^*(s)) - B'_{j_2} (\tilde{Y}_{2,\tilde{x}_0}^*(s)) \right) B'_{j_1} (Y_{1,\tilde{x}_0}^*(s)) ds \right)^2, \]
\[\sum_{j_1=1}^{J_1} \sum_{j_2=1}^{J_2} \left(\int_0^\tilde{t} \left(\tilde{G}(Y_{x_0}^*(s)) - \tilde{G}(Y_{\tilde{x}_0}^*(s)) \right) B'_{j_1} (Y_{1,\tilde{x}_0}^*(s)) B'_{j_2} (Y_{2,\tilde{x}_0}^*(s)) ds \right)^2. \]

This can be done by similar argument used for the case \(r = (2,0) \) and we omit the details.

References.