Imprecise probability in frequentist inference

Ryan Martin¹² North Carolina State University Researchers.One

BFF6.5 - Virtual Workshop https://researchers.one/conferences/bff65 February 5th, 2021

¹Research partially supported by NSF DMS 1811802. ²www4.stat.ncsu.edu/~rgmarti3

- Statistical inference is concerned with quantification of uncertainty about unknowns based on data, models, etc.
- "Uncertainty quantification" is usually associated with (ordinary) probability theory.
- BFFs seek out data-dependent probability distributions
 - (generalized) fiducial distributions
 - confidence distributions
 - (objective) Bayesian posterior distributions
 -
- Why bother constructing a full probability distribution?

- Answer: belief assignments " $A \mapsto \prod_{Y} (A)$ " are desirable.
- But the theory ignores the belief assignments, focusing on properties of *procedures* derived from them.
- My (frequentist) view:
 - Basic principle: if $\Pi_Y(A)$ is sufficiently large, then infer A
 - then Y → Π_Y(·) must be such that following the basic principle leads to "valid" inference
- What math structures in $\Pi_Y(\cdot)$ are consistent with validity?
- Take-away messages:
 - if $\Pi_Y(\cdot)$ is an ordinary probability, then it's not valid
 - if $\Pi_Y(\cdot)$ is a suitable *imprecise probability*, then it's valid

This talk

Problem setup

- Inferential models (IMs) and validity
- Main results:
 - false confidence theorem
 - consonant plausibility can be valid
 - characterization via imprecise prob
- Open questions:
 - constructing valid IMs
 - false confidence phenomenon
 - relaxing the validity condition

- Observable data: Y in a sample space \mathbb{Y} .
- Data are assumed to be relevant to the phenomenon under investigation, formalized through a *model*.
- Statistical model: a collection of probability distributions

$$\mathscr{P} = \{\mathsf{P}_{\boldsymbol{Y}|\vartheta} : \vartheta \in \Theta\}.$$

- θ is the unknown true value; ϑ is a generic value.
- Assume there's no prior information available.
- Goal is uncertainty quantification...

Definition.

An inferential model (IM) is a mapping from (y, \mathscr{P}, \ldots) to a datadependent map $\underline{\Pi}_{y} : 2^{\Theta} \to [0, 1]$ such that,

 $\underline{\Pi}_{v}(A) =$ degree of belief in A, given $y, ..., A \subseteq \Theta$.

- The "..." allows for other inputs, e.g., prior information.
- Could be non-additive:
 - Dual to $\underline{\Pi}_{\gamma}$, $\overline{\Pi}_{\gamma}(A) = 1 \underline{\Pi}_{\gamma}(A^c)$
 - $\overline{\Pi}_y(A)$ represents the plausibility of A, given y,...
- Examples include: Bayes, fiducial, DS,

- The IM definition is too vague; we need more constraints to pin down <u>Π</u>_Y's mathematical structure.
- Basic principle: if $\Pi_Y(A)$ is large, infer A.
- We don't want $\underline{\prod}_{Y}(A)$ to be large if A is false.
- Idea: require that $y \mapsto \underline{\Pi}_{y}(\cdot)$ satisfy

 $\{\theta \notin A \text{ and } Y \sim \mathsf{P}_{Y|\theta}\} \implies \underline{\Pi}_Y(A) \text{ tends to be small.}$

Consistent with the message in Reid & Cox: it is unacceptable if a procedure... of representing uncertain knowledge would, if used repeatedly, give systematically misleading conclusions.

Valid IMs

Definition.

An IM $(y, \mathscr{P}, \ldots) \mapsto \underline{\Pi}_y$ is *valid* if

 $\sup_{\theta \notin A} \mathsf{P}_{Y|\theta} \{ \underline{\Pi}_Y(A) > 1 - \alpha \} \le \alpha, \quad \text{for all } A \subseteq \Theta, \ \alpha \in [0, 1]$

- Intuitively, validity controls the frequency at which the IM assigns relatively high beliefs to false assertions.
- There's an equivalent statement in terms of $\overline{\Pi}_{\gamma}$.
- Theorem: If belief assignments are valid, then procedures derived from them are good, i.e.,
 - "reject $H_0: \theta \in A$ if $\overline{\Pi}_y(A) \leq \alpha$ " is a size α test,
 - the 100(1 α)% plausibility region { $\vartheta : \overline{\Pi}_y(\{\vartheta\}) > \alpha$ } has coverage probability $\geq 1 \alpha$.

- Question: What kind of mathematical structure in the belief assignments $A \mapsto \prod_{y} (A)$ is consistent with validity?
- Summary of the three main results:
 - 1 if $\Pi_Y = \underline{\Pi}_Y = \overline{\Pi}_Y$ is a probability, then it's not valid
 - **2** if $\overline{\Pi}_Y$ is a consonant plausibility function, aka a possibility measure, then it can be valid
 - 3 procedures with good frequentist properties correspond to valid IMs that are possibility measures.

Main result 1

Satellite conjunction analysis:

- Orbiting satellite could collide with another object.
- To avoid this, analysts compute a non-collision probability.³
- Satellite judged to be safe if non-collision probability is high.
- Noisier data makes non-collision probability large⁴

³Details in Balch, M., and Ferson (2019), arXiv:1706.08565.

⁴M. (2019), researchers.one/articles/19.02.00001

- *False confidence:* Hypotheses tending to be assigned high probability even if data don't support them.
- Probabilities are afflicted with false confidence, not valid.
- "Is [probability] just quick and dirty confidence?" (Fraser)

False confidence theorem (Balch, M., and Ferson 2019).

Let Π_Y be a probability on Θ , depending on data Y. Then, for any $\alpha \in (0, 1)$ and any $\theta \in \Theta$, there exists $A \subset \Theta$ such that

$$A
ot \ni \theta$$
 and $\mathsf{P}_{Y|\theta}\{\mathsf{\Pi}_Y(A) > 1 - \alpha\} > \alpha.$

Main result 2

Consonant plausibility function/possibility measure:

- Plausibility contour, $\pi_{\gamma} : \Theta \mapsto [0, 1]$ with $\sup_{\vartheta} \pi_{\gamma}(\vartheta) = 1$.
- Consonant plausibility: $\overline{\Pi}_{y}(A) = \sup_{\vartheta \in A} \pi_{y}(\vartheta)$.

Two examples of a plausibility contour function...

Main result 2, cont.

Frequentist procedures are based on p-values:

•
$$(y, \vartheta) \mapsto \pi_y(\vartheta)$$
, small values imply y and ϑ disagree

• If
$$Y \sim \mathsf{P}_{Y|\theta}$$
, then $\pi_Y(\theta) \sim \mathsf{Unif}(0,1)$.

Comparison:

• P-value + consonance \rightarrow valid.⁵

Theorem (M. 2021).

If the p-value π_y satisfies the conditions of a plausibility contour, then the IM with $\overline{\Pi}_y(A) = \sup_{\vartheta \in A} \pi_y(\vartheta)$ is valid.

⁵M. (2021), researchers.one/articles/21.01.00002

Theorem (M. 2021).

Let $\{C_{\alpha} : \alpha \in [0, 1]\}$ be a family of confidence regions for $\phi = \phi(\theta)$ that satisfies the following properties:

Coverage. inf_{θ} P_{Y| θ} { $C_{\alpha}(Y) \ni \phi(\theta)$ } $\geq 1 - \alpha$ for all α ; Nested. if $\alpha \leq \beta$, then $C_{\beta} \subseteq C_{\alpha}$;

Compatible.

There exists a valid IM for θ , a possibility measure, whose derived marginal plausibility regions $C^*_{\alpha}(y)$ for ϕ satisfy

 $C^{\star}_{\alpha}(y) \subseteq C_{\alpha}(y)$ for all $(y, \alpha) \in \mathbb{Y} \times [0, 1]$.

(There's an analogous result for tests.)

M. (2021), researchers.one/articles/21.01.00002

Random sets on an auxiliary space.

Open problem: valid IM construction, cont.

- Possibility measures on an auxiliary space.⁶
- P-values + consonance
- New IM algorithm⁷
 - Proof of the above theorem is *constructive*
 - Defines an "algorithm" for constructing a valid/efficient IM.

 $^6 Liu$ and M. (2020), researchers.one/articles/20.08.00004 $^7 M.$ (2021), researchers.one/articles/21.01.00002

Open problem: understanding false confidence

- Recall: for any additive IM, there exists false assertions A that tend to be assigned high probability.
- How serious of a problem is this? Can we characterize the assertions afflicted with false confidence?
- In my experience, the non-trivial examples occur when A is about some non-linear function $\phi = \phi(\theta)$.
- Marginalization challenges due to non-linearity:
 - Dawid et al (1973)
 - Gleser & Hwang (1987)
 - Fraser (2011), Fraser et al (2016)
- Do these issues relate to false confidence? If so, how?

Open problem: weakening validity

- Validity is a reasonable condition, but it is strong.
- Adjustments needed to incorporate (partial) prior information or structural assumptions, e.g., sparsity.
- New approach in prediction.⁸
 - $(Y, \tilde{Y}) \sim \mathsf{P}$; observe Y, predict \tilde{Y} .
 - "Probabilistic predictor" $\overline{\Pi}_Y$ is valid if

$$\underbrace{\mathsf{P}\{\overline{\Pi}_{Y}(A) \leq \alpha, \, \tilde{Y} \in A\}}_{\mathsf{E}[1\{\overline{\Pi}_{Y}(A) \leq \alpha\} \, \mathsf{P}(\tilde{Y} \in A|Y)]} \leq \alpha, \quad \mathsf{all} \, (\alpha, A, \mathsf{P}).$$

There are some interesting consequences of this definition...

How might this look in an inference problem?

⁸Cella and M. (2020), researchers.one/articles/20.01.00010

Open problem: weakening validity, cont.

Validity.

$$\sup_{\substack{\theta \notin A}} \mathsf{P}_{Y|\theta}\{\underline{\Pi}_{Y}(A) > 1 - \alpha\} \le \alpha, \quad \text{for all } A \in 2^{\Theta}, \ \alpha \in [0, 1]$$

- Bound α away from 1 (Walley 2002)
- Restrict to a large but proper subset of assertions
- Replace supremum by a more general upper expectation

Validity – weaker version?

$$\overline{\mathsf{E}}_{\theta}\big[\mathbf{1}_{\theta\notin A}\,\mathsf{P}_{\mathbf{Y}|\theta}\{\underline{\Pi}_{\mathbf{Y}}(A)>1-\alpha\}\big]\leq \alpha,\quad\text{for all }A\in\mathcal{A}\text{, }\alpha\in[0,\bar{\alpha}]$$

Conclusion

- Imprecise probabilities are closely tied to frequentist inference.
- Important for interpretation:
 - p-values are the plausibility of the null hypothesis
 - confidence regions are collections of parameter values that are sufficiently plausible
- Hopefully can capture the spectrum from no prior info to complete prior info, and a corresponding notion of validity.
- New and exciting territory.

Thanks for your attention! www4.stat.ncsu.edu/~rgmarti3