False confidence, non-additive beliefs, and valid statistical inference12

Ryan Martin
North Carolina State University
www4.stat.ncsu.edu/~rmartin

6th African International Conference on Statistics
Arsi University, Ethiopia
May 28th, 2019

1Paper available at https://www.researchers.one/article/2019-02-1
2Thanks to friends and collaborators M. Balch, H. Crane, C. Liu,...
Statistics has developed a lot in the last 50+ years.

But important fundamental questions about the role of probability in statistical inference remain unanswered.

Currently we have two dominant schools of thought:

- *frequentist*
- *Bayesian*

Lots of debate over the years about which one is “right.”

This hasn’t really helped.

I want to focus on what science needs from statistics which, in my assessment, is a level of *reliability*.
Statistical problem:
- Observable data is Y;
- Model is $\mathcal{P} = \{P_{Y|\theta} : \theta \in \Theta\}$ — taken as given today.

Scientific questions correspond to hypotheses about θ.

Goal is to quantify uncertainty about θ, given $Y = y$.

Define an inferential model

$$(y, \mathcal{P}, \ldots) \mapsto b_y : 2^\Theta \to [0, 1],$$

where $b_y(A)$ represents the data analyst’s degrees of belief about a hypothesis $A \subseteq \Theta$ based on data y, model \mathcal{P}, etc.

The inferential model could be lots of things:
- a Bayesian posterior distribution;
- a fiducial or confidence distribution;
- ...

Pointless if the inferential model isn’t “reliable.”

Brad Efron said (roughly):

the construction of reliable, prior-free, inferential models is the most important unresolved problem in statistics.

I’m going to tell you about my attempt at a solution.

Key insight: go non-additive!

- Familiar things are additive, i.e., b_y is a probability.
- But additivity isn’t necessary, might even be a constraint.
- “There’s more to uncertainty than probabilities”

Take-away messages:

- additive beliefs are afflicted with false confidence (bad)
- but good non-additive beliefs can avoid false confidence

3 Theme of a conference I’m participating in this summer in Ghent on imprecise probabilities, http://www.isipta2019.ugent.be
This talk

- The price of additivity:
 - satellite collision example
 - false confidence theorem

- Going non-additive:
 - avoiding false confidence: the validity property
 - non-additive beliefs and random sets
 - construction of valid inferential models

- Satellite collision, revisited

- Conclusion

(Questions planted in blue)
A satellite orbiting Earth could collide with another object.

Potential mess, so navigators try to avoid collision.

Data on position, velocity, etc is used, along with physical and statistical models, to compute a collision probability.

If collision probability is low, then satellite is judged safe; otherwise, some action is taken.

An unusual phenomenon has been observed in the satellite conjunction analysis literature:

noisier data makes non-collision probability large.
Simple illustration:
- \(\|y\|\) denotes measured distance between satellite and object.
- True distance \(\leq 1\) implies collision.
- Measurement error variance is \(\sigma^2\).
- \(p_y(\sigma)\) = probability of non-collision, given \(y\).

When \(\sigma\) is large, \(p_y(\sigma)\) is large, no matter what \(y\) is!

Potentially misleading conclusions!

\[\begin{align*}
(a) & \quad \|y\|^2 = 0.5 \\
(b) & \quad \|y\|^2 = 0.9 \\
(c) & \quad \|y\|^2 = 1.1 \\
(d) & \quad \|y\|^2 = 1.5
\]
False confidence

- What’s going on here?
- Apparently, data may not be sufficiently informative with respect to questions about collision/non-collision.
- Additivity forces the probability to go somewhere, happens that it goes to non-collision no matter what data says.
- i.e., even if satellite is on a direct collision course, if there’s enough noise, then probability tells navigators that it’s safe.
- *False confidence:*[^4] a hypothesis tending to be assigned large probability even though data does not support it.
- Is this a general phenomenon...?

False confidence, cont.

False confidence theorem.

Let Π_Y be any additive belief on Θ, depending on data Y. Then, for any α and any t, there exists $A \subset \Theta$ such that

$$A \not\ni \theta \quad \text{and} \quad P_Y | \theta \{ \Pi_Y (A) > t \} \geq \alpha.$$

- In words, there always exists a false hypothesis that tends to be assigned high posterior probability.
- If judgments about the plausibility of A are made based on the magnitude of $\Pi_Y (A)$, then there’s risk of systematic error.
- Theorem doesn’t say which hypotheses are afflicted (any clue?), only that they exist.
- What about asymptotics?
False confidence, cont.

- Simplified version of the satellite example.
 - Let $A = \{\text{non-collision}\}$.
 - Then $\Pi_Y(A)$ as a random variable, with a CDF
 - Plot CDF when data are generated under a collision course.

- *False confidence*: $\Pi_Y(A)$ is almost always large!

![CDF Plot](image)
Avoiding false confidence

- Nancy Reid and D. R. Cox write:

 it is unacceptable if a procedure... of representing uncertain knowledge would, if used repeatedly, give systematically misleading conclusions

- In other words, unreliability is bad.

- Theorem says every additive belief function is afflicted with false confidence, at risk of being unreliable.

- To avoid this, \(b_y \) must be non-additive, e.g.,

 \[b_y(A) + b_y(A^c) < 1. \]

- But not every non-additive belief avoids false confidence.

- So we need some additional restrictions...
Validity property

Definition.
An inferential model $(y, M, \ldots) \mapsto b_y$ is valid if

$$\sup_{\theta \not\in A} P_{Y|\theta}\{b_Y(A) > 1 - \alpha\} \leq \alpha, \quad \forall A \subseteq \Theta, \quad \forall \alpha \in (0, 1).$$

- Validity property implies that assigning high belief to a false hypothesis is a rare event — no false confidence.
- “For all $A \subseteq \Theta$” is a strong condition — why impose it?
- α on inside and outside calibrates the belief function values, i.e., so that I know what “large” and “small” means.
- Implies that procedures derived from a valid b_y have frequentist error rate control; details later.
Simplest way to construct non-additive beliefs on a space \mathbb{X} is via a random set $\mathcal{X} \sim P_{\mathcal{X}}$ that takes values in $2^{\mathbb{X}}$. For a fixed set $A \subseteq \mathbb{X}$, a realization of \mathcal{X} could be
- fully contained in A,
- fully contained in A^c,
- or have non-empty intersection with both.

Then the containment functional

$$b(A) = P_{\mathcal{X}}(\mathcal{X} \subseteq A), \quad A \subseteq \mathbb{X},$$

is non-additive, in particular, $b(A) + b(A^c) \leq 1$.

Construction of valid non-additive beliefs

- Express the statistical model, $P_{Y|\theta}$, as

 $$Y = a(\theta, U), \quad U \sim P_U, \quad P_U \text{ known.}$$

- Intuition: If U were observable, then just solve for θ in terms of Y and U — done!

- Unfortunately, U is not observable...

- Its distribution is known, so we can “guess” its unobserved value with a certain degree of reliability.

- This “guess” is based on a random set $S \sim P_S$ in the U-space.

- There is theory to guide the choice of P_S.
Given $\mathcal{S} \sim P_S$, push it forward to the θ space:

$$\Theta_y(\mathcal{S}) = \bigcup_{u \in \mathcal{S}} \{ \vartheta : y = a(\vartheta, u) \}.$$

The *belief function* is just the containment functional

$$b_y(A) = P_S\{\Theta_y(\mathcal{S}) \subseteq A\}.$$

Dual is the *plausibility function*

$$p_y(A) := 1 - b_y(A^c) = P_S\{\Theta_y(\mathcal{S}) \cap A \neq \emptyset\}.$$

Non-additive, i.e., $b_y(A) \leq p_y(A)$ for all $A \subseteq \Theta$.
Validity theorem

Theorem.

With a “suitable choice of random set $S \sim P_S$,” the inferential model constructed above satisfies the validity condition.

- **Re: “suitable choice of S.”**
 - Let $f(u) = P_S(S \ni u)$.
 - Need $f(U) \geq_{st} \text{Unif}(0, 1)$ when $U \sim P_U$.

- This is actually easy to arrange...

- **Consequences of validity:**
 - “Reject $H_0 : \theta \in A$ if $p_y(A) \leq \alpha$” is a size α test.
 - The 100$(1 - \alpha)$% plausibility region
 \[
 \{\vartheta : p_y(\{\vartheta\}) \geq \alpha\}
 \]
 is a 100$(1 - \alpha)$% confidence region.
If you’re still looking for that perfect summer-time beach read, then your search is over!

Inferential Models
Reasoning with Uncertainty

Ryan Martin
Chuanhai Liu
Satellite collision, revisited

- Same illustration as before, but now showing
 - same non-collision probability (black)
 - non-collision belief (red) and plausibility (red, dashed).
- Notice belief and plausibility split when σ is large.
- What does the gap between them represent?

$\parallel y \parallel^2 = 0.5$

$\parallel y \parallel^2 = 0.9$

$\parallel y \parallel^2 = 1.1$

$\parallel y \parallel^2 = 1.5$
By construction, there is no false confidence.

Check by evaluating CDF of $b_Y(A)$ for $A = \{\text{non-collision}\}$.

Same experiment as before.

- Non-collision probabilities (left) tend to be near 1.
- Non-collision belief (right) tends to be near 0 — correct!
Concluding remarks

- Additive beliefs put user at risk of false confidence.
- Avoid this risk with suitable non-additive beliefs.
- Close connections between non-additive beliefs and classical notions like p-values and confidence.\(^5\)
- Many non-trivial details I didn’t tell you...
- Lots of interesting questions that remain to be answered:
 - marginalization mysteries
 - efficiency and optimality
 - model uncertainty
 - computation
 - ...

The peer review system is broken in various ways.

How so?

Successful reform requires new ideas.

Harry Crane and I developed a new open-access publication platform, featuring an *author-driven* peer review process.

For details, check us out at

www.researchers.one

www.twitter.com/@ResearchersOne
Thank you!

rgmarti3@ncsu.edu
www4.stat.ncsu.edu/~rmartin