(8) Hierarchical models

ST440/540: Applied Bayesian Statistics
Hierarchical models

- Hierarchical modeling provides a framework for building complex and high-dimensional models from simple and low-dimensional building blocks.

- Of course, it is possible to analyze these models using non-Bayesian methods.

- However, this modeling framework is popular in the Bayesian literature because MCMC is conducive to hierarchical models.

- Both “divide and conquer” big problems by splitting them into a series of smaller problems in the same way.
Hierarchical models

Often Bayesian models can be written in the following layers of the hierarchy

1. **Data layer**: \([Y|\theta, \alpha]\) is the likelihood for the observed data \(Y\)

2. **Process layer**: \([\theta|\alpha]\) is the model for the parameters \(\theta\) that define the latent data generating process

3. **Prior layer**: \([\alpha]\) prior for hyperparameters
Epidemiology example - Data layer

- Let S_t and I_t be the number of susceptible and infected individuals in a population, respectively, at time t

- The data Y_t is the number of observed cases at time t

- The data layer models our ability to measure the process I_t

- **Data layer**: $Y_t | I_t \sim \text{Binomial}(I_t, p)$

- This assumes no false positives and false negative probability p
Epidemiology example - Process layer

- Scientific understanding of the disease is used to model disease propagation

- We might select the simple Reed-Frost model

 Process layer: \(I_{t+1} \sim \text{Binomial} \left[S_t, 1 - (1 - q)^I_t \right] \)

 \[S_{t+1} = S_t - I_{t+1} \]

- This assumes all infected individuals are removed from the population before the next time step

- Also that \(q \) is the probability of a non-infected person coming into contact with and contracting the disease from an infected individual
The epidemiological process-layer model expresses the disease dynamics up to a few unknown parameters.

The Bayesian model is completed using priors, say,

Prior layer:

\[I_1 \sim \text{Poisson}(\lambda_1) \]
\[S_1 \sim \text{Poisson}(\lambda_2) \]
\[p, q \sim \text{beta}(a, b) \]
Hierarchical models and MCMC

- Consider the classic one-way random effects model:

\[Y_{ij} \sim N(\theta_i, \sigma^2) \quad \text{and} \quad \theta_i \sim N(\mu, \tau^2) \]

where \(Y_{ij} \) is the \(j^{th} \) replicate for unit \(i \) and \(\alpha = (\mu, \sigma^2, \tau^2) \) has an uninformative prior

- This hierarchy can be written using a directed acyclic graph (DAG; also called Bayesian network or belief network)

Epidemiology example - DAG

Data layer

Process layer

Prior layer

ST440/540: Applied Bayesian Statistics (8) Hierarchical models
Hierarchical models and MCMC

- MCMC is efficient in this case even if the number of parameter or levels of the hierarchy is large

- You only need to consider “connected nodes” when you update each parameter

1. \([\theta_i | \cdot]\]

2. \([\mu | \cdot]\]

3. \([\sigma^2 | \cdot]\]

4. \([\tau^2 | \cdot]\]

- Each of these updates is a draw from a standard one-dimensional normal or inverse gamma
Two-way random effects model

- http://www4.stat.ncsu.edu/~reich/ABA/code/Ozone

- The ozone measurement at spatial location \(i\) and day \(j\) is denoted \(Y_{ij}\)

- We fit the model

\[
Y_{ij} \sim \text{Normal}(\mu + \alpha_i + \gamma_j, \sigma^2)
\]

- \(\mu\) is the overall mean

- \(\alpha_i\) is the random effect for location \(i\)

- \(\gamma_j\) is the random effect of day \(j\)
Two-way random effects model

- Model: \(Y_{ij} \sim \text{Normal}(\mu + \alpha_i + \gamma_j, \sigma^2) \)

- Priors for the fixed effects model:
 \[\alpha_i \sim \text{Normal}(0, 10^2) \quad \text{and} \quad \gamma_j \sim \text{Normal}(0, 10^2) \]

- Priors for the random effects model:
 \[\alpha_i \sim \text{Normal}(0, \sigma^2_a) \quad \text{and} \quad \gamma_j \sim \text{Normal}(0, \sigma^2_g) \]

- These look similar, when do we say something is a random effect in a Bayesian analysis?
Random slopes model

- Let Y_{ij} be the j^{th} observation for subject i

- As an example, consider the data plotted on the next slide; were Y_{ij} is the bone density for child i at age X_j.

- Here we might specify a different regression for each child to capture variability over the population of children:

 $$
 Y_{ij} \sim \text{Normal}(\gamma_{0i} + X_i \gamma_{1i}, \sigma^2)
 $$

- $\gamma_i = (\gamma_{i0}, \gamma_{i1})^T$ controls the growth curve for child i

- These separate regression are tied together in the prior, $\gamma_i \sim \text{Normal}(\beta, \Sigma)$, which borrows strength across children.

- This is a linear mixed model: γ_i are random effects specific to one child and β are fixed effects common to all children.
Bone height data

ST440/540: Applied Bayesian Statistics (8) Hierarchical models
Prior for a covariance matrix

- The random-effects covariance matrix is \(\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} \)

- \(\sigma_1^2 \) is the variance of the intercepts across children

- \(\sigma_2^2 \) is the variance of the slopes across children

- \(\sigma_{12} \) is the covariance between the intercepts and slopes

- Prior 1: \(\sigma_1^2, \sigma_2^2 \sim \text{InvGamma} \) and \(\rho = \frac{\sigma_{12}}{\sigma_1 \sigma_2} \sim \text{Unif}(−1, 1) \)

- Prior 2: Inverse Wishart works better in higher dimensions
The inverse Wishart distribution is the most common prior for a $p \times p$ covariance matrix.

It reduces to the inverse gamma distribution if $p = 1$.

Say $\Sigma \sim \text{InvW}(\kappa, R)$ where $\kappa > p + 1$ and R is a $p \times p$ covariance matrix are hyperparameters.

The PDF is

\[
f(\Sigma) \propto |\Sigma|^{-(\kappa+p+1)/2} \exp \left[\frac{1}{2} \text{trace}(R\Sigma^{-1}) \right]
\]

The mean is $\frac{1}{\kappa-p-1} R$.
The hierarchical model is:

\[Y_{ij} \sim \text{Normal}(\gamma_0i + X_i\gamma_1i, \sigma^2) \]

\[\gamma_i \sim \text{Normal}(\beta, \Sigma) \]

\[p(\beta) \propto 1 \]

\[\sigma^2 \sim \text{InvGamma}(a, b) \]

\[\Sigma \sim \text{InvWishart}(\kappa, R) \]

The full conditionals are all conjugate

MCMC code:

http://www4.stat.ncsu.edu/~reich/ABA/code/lmm.R

JAGS:

http://www4.stat.ncsu.edu/~reich/ABA/code/Jaw
Bone height data - fitted values

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Population mean intercept

Population mean slope

Corr(\gamma_1, \gamma_2)

\beta_1

\beta_2

Correlation
Missing data models

- We will deal with missing data in the linear regression context, but the ideas apply to all models

- The model is

 \[Y_i \sim \text{Normal}(\beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{ip}, \sigma^2) \]

- Often either \(Y_i \) or elements \(X_{ij} \) are missing

- We will study separately the case of missing responses and missing covariates
Missing responses

- If the response is missing this is essentially a prediction problem
- We have seen how to handle this in JAGS
- We obtain samples from the PPD of Y_i
- At each MCMC iteration we simply draw

$$Y_i \sim \text{Normal}(\beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{ip}, \sigma^2)$$

- This distribution accounts for random error as well as uncertainty in the model parameters
- For the other updates the data are essentially complete
- If only responses are missing, can we delete them for the purpose of estimating β?
Missing covariates

- Now say all responses are observed, but some covariates are missing.

- The simplest approach is imputation, e.g., just plug in the sample mean of the covariate for the missing values.

- This doesn’t account for uncertainty in the imputations.

- Bayesian methods handle this well using MCMC.
Missing covariates

- The main idea is to treat the missing values as unknown parameters in the Bayesian model.

- Unknown parameters need priors, so missing \(\mathbf{X}_i = (X_{i1}, \ldots, X_{ip})^T \) must have priors such as
 \[\mathbf{X}_i \sim \text{Normal}(\mu_X, \Sigma_X) \]

- Assumptions about missing data:
 - Missing status is independent of \(Y \) and \(\mathbf{X} \)
 - Covariates are Gaussian
 - There are ways to relax both assumptions, but it becomes complicated.
Missing covariates

- Of course if the prior is way off, the results will be invalid.

- For example, if in reality the data are not missing at random the Bayesian model will likely give bad results.

- Example of non-random missingness:

- If specified correctly, the model will lead to inference for β that properly accounts for uncertainty about the missing data.
Hierarchical linear regression model with missing data

- \(Y_i | X_i, \beta, \sigma^2 \sim \text{Normal}(X_i^T \beta, \sigma^2) \)
- \(X_i | \mu, \Sigma \sim \text{Normal}(\mu, \Sigma) \)
- \(p(\beta) \propto 1 \)
- \(\sigma^2 \sim \text{InvG}(0.01, 0.01) \)
- \(\mu \sim \text{Normal}(0, 100^2 I_p) \)
- \(\Sigma \sim \text{InvWishart}(0.01, 0.01 I_p) \)

If some observations have missing \(Y \) and some have missing \(X \), can we delete those with missing \(Y \)? Can we delete those with missing \(X \)?
Overview of the Gibbs sampling algorithm

▶ The full conditional of missing Y_i is:

▶ The full conditional of missing X_i is:

▶ In fact, all the full conditionals are conjugate

▶ JAGS does not handle missing X well

▶ Let’s use this as an opportunity to explore OpenBUGS
 http://www4.stat.ncsu.edu/~reich/ABA/code/Missing.R
Non- and Semi-parametric modeling

- Nonparametric (NP) methods attempt to analyze the data by making the fewest number of assumptions as possible.

- NP methods are generally more robust and flexible, but less powerful than correctly specified parametric models.

- Most frequentist NP methods completely avoid specifying a model.

- For example, a rank or sign test to compare two means.
Non- and Semi-parametric modeling

- Bayesian methods need a likelihood in order to obtain a posterior, so you can’t completely avoid specifying a model.

- Bayesian NP (BNP) then attempts to specify a model that is so flexible that it almost certainly captures the true model.

- One definition of the BNP model is one that has infinitely-many parameters.

- In some cases, NP models are difficult conceptually and computationally, and so semiparametric models with a large but finite number of parameters are useful approximations.
Parametric simple linear regression

Consider the classic parametric model:

\[Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \quad \text{where} \quad \epsilon_i \sim N(0, \sigma^2). \]

Assumptions:

1. \(\epsilon_i \) are independent
2. \(\epsilon_i \) are Gaussian
3. The mean of \(Y_i \) is linear in \(X \).
4. The residual distribution does not depend on \(X \)

Alternatives:

1. Parametric alternatives such as a time series model.
2. Let \(\epsilon_i \sim F \), and place a prior on the distribution \(F \).
3. Let \(E(Y|X) = g(X) \) and put a prior on the function \(g \).
4. Heteroskedastic regression \(\text{Var}(\epsilon_i) = \exp(\alpha_0 + \alpha_1 X) \).

In 2-4 we are placing priors on functions, not parameters.
Nonparametric regression

- Let’s relax the assumption of linearity in the mean.

- The mean is \(g(X) \), where \(g \) is some function that relates \(X \) to \(E(Y|X) \).

- Parametric models include
 1. Linear: \(g(X) = \beta_0 + \beta_1 X \)
 2. Quadratic: \(g(X) = \beta_0 + \beta_1 X + \beta_2 X^2 \)
 3. Logistic: \(g(X) = \beta_0 + \beta_1 \frac{\exp[\beta_2 + \beta_3 X]}{1 + \exp[\beta_2 + \beta_3 X]} \).

- NP regression puts a prior on the curve \(g(X) \), rather than the parameters \(\beta_1, \ldots, \beta_p \) that determine the parametric model.
Semiparametric regression

- Semiparametric regression approximates the function g using a finite basis expansion

$$
g(X) = \sum_{j=1}^{J} B_j(X) \beta_j
$$

where $B_j(X)$ are known basis functions and β_j are unknown coefficients that determine the shape of g

- Example: the cubic spline basis functions are

$$
B_j(X) = (X - v_j)^3
$$

where v_j are fixed knots that span the range of X

- Many other expansions exist: wavelets; Fourier, etc

- Fact: A basis expansion of J terms can match the true curve g at any J points $X_1, ..., X_J$

- So increasing J gives an arbitrarily flexible model
The model is \(Y_i \sim N(B_i^T \beta, \sigma^2) \), where \(\beta_j \sim N(0, \tau^2) \) and \(B_i \) is comprised of the known basis functions \(B_j(X_i) \).

Therefore, the model is usual linear regression model and is straightforward to fit using MCMC.

How to pick \(J \)?

Can we have more basis functions than observations?

What would you do if your prior was that \(g \) was probably quadratic, but you are not 100% sure about this. That is, your prior is that \(g(X) \approx \beta_0 + \beta_1 X + \beta_2 X^2 \).