Approximate Bayesian Computation (ABC)

Isaac J. Michaud
October 27, 2017
Introduction - Bayesian Statistics

• Treat unknown parameters as random variables
 ➢ Distribution describes your uncertainty about the parameter’s true value
 ➢ Data is incorporated to enhance your understanding
 ➢ Loosely: get data to reduce variance of parameter distribution

• Approximate Bayesian computation is a technique for applying Bayes’ rule to compute these updates without many assumptions

• We will do some simple examples

• Apply ABC to locate special nuclear material
Bayesian Inference (in 1 minute)

• $f(x|\theta)$ - Statistical model (how data is generated)
• $\pi(\theta)$ - Prior parameter density (your belief before new data)
• $\pi(\theta|x)$ - Posterior parameter density (your belief after new data)

$$
\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\lambda)\pi(\lambda)d\lambda}
$$

• Inference is done through the posterior distribution of the parameter
• Posterior mean or median, credible intervals, etc.
• Computing the posterior is the name of the Bayesian game
Example: Designing a Highway

• Should we build a 2, 3, or 4 lane highway to ensure fluid circulation?
• \(X \sim \text{pois}(\theta) \) - number of cars that pass an off ramp in 1 minute
• \(\theta \sim \text{unif}(0,100) \) - prior belief about the traffic rate
• Data: \{25, 27, 32\}
• Likelihood: \(\mathcal{L}(\theta|X = \{25, 27, 32\}) = f(X = \{25, 27, 32\}|\theta) \)
• Posterior: \(\pi(\theta|x) \propto \frac{e^{-3\theta}\theta^{84}}{25!27!32!} \left(\frac{1}{100} \right) I(\theta \in [0,100]) \)

\(\theta|x \sim \text{Gamma}(85,1/3) \) (well almost...)
Example: Designing a Highway

The posterior mean is 28.33 (higher than $\bar{x} = 28$).
Computing a Bayesian Posterior

\[\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\lambda)\pi(\lambda)d\lambda}\]

- Analytically...
- Integration
 - Numerically (get out your trapezoid rule)
 - Monte Carlo/Importance Sampling
- Markov Chain Monte Carlo (MCMC)
 - Sample from Markov chain whose stationary distribution is \(\pi(\theta|x)\)
 - Includes Gibbs sampling
- Sequential Monte Carlo (SMC) and Particle Filters
Accept/Reject Sampling

That stuff is too complicated... let’s simplify...

Algorithm 1:
1. Draw θ_0 from $\pi(\theta)$
2. Draw x_0 from $f(x|\theta_0)$
3. If $x_0 = x$ then accept θ_0, else reject θ_0

• Repeat until N posterior samples are obtained
• The accepted θ are being sampled from the posterior
• Computationally infeasible (especially if $f(x|\theta)$ is continuous)
Approximate Bayesian Computation (ABC)

• Relax the equality by requiring “closeness”

Algorithm 2:

1. Draw θ_0 from $\pi(\theta)$
2. Draw x_0 from $f(x|\theta_0)$
3. If $d(x_0, x) < \epsilon$ then accept θ_0, else reject θ_0

• d is a suitably chosen metric (typically Euclidean)
• Repeat until N approximate posterior samples are obtained
• Sampling from $\pi(\theta|d(x_0, x) < \epsilon)$ which is not the true posterior
Why would you do this?

• Subtle difference between model \(f(x|\theta) \) and likelihood \(\mathcal{L}(\theta|x) \)
• Model describes “what if” scenarios (forward direction)
• Likelihood explains what has happened (backward direction)

Example:
 1. You don’t study for the Basic Exam. How are you going to do?
 2. You did poorly on the Basic Exam. Why?

• It is often easier to create models than compute likelihoods
 ➢ Population Genetics, Astronomy, Systems Biology
 ➢ Stochastic dynamical systems, simulations, etc.
Example: Normal Model

- Model $X_i \sim N(\mu, 1), iid, i = 1, \ldots, n$
- Prior $\mu \sim N(0, 100)$
- Observed Data: $x_1 = 3, x_2 = 4$
- Posterior $\mu|x_1, x_2 \sim N(3.48, 0.50)$

ABC Approach:
- $M = 100,000$ prior draws of μ
- $\epsilon = 0.6$, accepted the smallest 1000 distances
- Results are good, but can we make them better?
Improving ABC Performance

• Make M larger and ϵ smaller (can I have my PhD now?)
• Work smarter not harder! Reduce the dimension of the problem
• **Definition:** A statistic $T(X)$ is *sufficient* for parameter θ if the conditional distribution of X given $T(X)$ is free of θ, or in other words
 \[f(X|\theta) = g(T(X)|\theta)h(X) \]
• Thanks Casella and Berger!
• Key idea: a sufficient statistic summarizes all the information about the parameter that is contained a sample (e.g. sample of 100 summarized by a sample mean)
ABC with Sufficiency

• Back to our normal example
• $X_1, X_2 \sim N(\mu, 1) \Rightarrow \bar{X} \sim N\left(\mu, \frac{1}{\sqrt{2}}\right)$
• $M = 100,000$ prior draws of μ
• Accepted the smallest 1000 distances
• ABC posterior definitely improved
• Sufficiency gives you more bang for your computational dollar
Wait One Second!

- The reason for doing ABC was we couldn’t compute the likelihood.
- How can we factor a likelihood we can’t compute?

Magic!

- Approximate sufficient statistics
- Use methods like PCA and maximum entropy to find informative functions of the data and hope for the best
Theory

Let x^* be the observed data and $p_{T|\theta}$ be the density of the sufficient statistic then:

1. If $t \to p_{T|\theta} (t|\theta)$ is continuous and uniformly bounded in the neighborhood of $t^* = T(x^*)$ for all θ then as $\epsilon \to 0^+$ we sample θ from the true posterior $p(\theta|x^*)$ using the ABC algorithm.

2. The average number of samples required to get a single accepted parameter is $O(\epsilon^{-q})$ where $q = \dim(t^*)$.
Radiation Sensor Networks (CNEC)

• Radiation source in an urban environment
• Sensors observe gamma ray counts, $\text{Pois}(\Gamma_i)$

$$\Gamma_i = \frac{\epsilon_i A_i I_0}{4\pi|r_i - r_0|^2} \exp \left(-\sum_j \sigma_{n_j} s_{n_j}\right) + B_i$$

• Goal is to infer source location and intensity (x,y,i)

Issues:
• Small amount of data
• Likelihood is not smooth
• Needs to be real-time
Source Posterior

- Source (cyan dot)
 - Uniform priors
- Three sensors (green dots)
 - Five obs. per sensor
- Sensor mean responses are sufficient (three dimensional)
- $M = 50,000$ samples
- Accept 1000 best parameters
- Run time ≈ 30 minutes (single core)
Caveat Emptor

• You need to be cautious
 ➢ ABC can be applied in really complicated settings
 ➢ You will probably not have analytic or numerical verification of posterior

• ABC is computationally expensive (true of most Bayesian methods)

• Consider scaling sufficient statistics so that a single statistic does not dominate the distance metric

• Don’t be happy with the first thing that comes out
 ➢ Uses different epsilons
 ➢ Use ABC multiple times with different random seeds, compare results
 ➢ Check for sensitivity to the tuning parameters
Conclusions

• ABC provides a quick and dirty way of estimating the posterior
• Works in cases where you cannot or are unwilling to compute a likelihood function
• These problems occur frequently in science when there is a forward model that describes the evolution of a system over time
• Although computationally expensive it is easily parallelizable
References and More Examples

• If you like Bayesian statistics and socks:

R package: abc