Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating

Gina M. Hilton, Alexia J. Taylor, Salik Hussain, Erinn C. Dandley, Emily H. Griffith, Stavros Garantziotis, Gregory N. Parsons, James C. Bonner & Michael S. Bereman

To cite this article: Gina M. Hilton, Alexia J. Taylor, Salik Hussain, Erinn C. Dandley, Emily H. Griffith, Stavros Garantziotis, Gregory N. Parsons, James C. Bonner & Michael S. Bereman (2017): Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating, Nanotoxicology, DOI: 10.1080/17435390.2017.1299888

To link to this article: http://dx.doi.org/10.1080/17435390.2017.1299888

View supplementary material

Accepted author version posted online: 23 Feb 2017.
Published online: 13 Mar 2017.

Submit your article to this journal

Article views: 9

View related articles

View Crossmark data
Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating

Gina M. Hilton, Alexia J. Taylor, Salik Hussain, Erinn C. Dandley, Emily H. Griffith, Stavros Garantziotis, Gregory N. Parsons, James C. Bonner and Michael S. Bereman

ABSTRACT
Carbon nanotubes (CNTs), a prototypical engineered nanomaterial, have been increasingly manufactured for a variety of novel applications over the past two decades. However, since CNTs possess fiber-like shape and cause pulmonary fibrosis in rodents, there is concern that mass production of CNTs will lead to occupational exposure and associated pulmonary diseases. The aim of this study was to use contemporary proteomics to investigate the mechanisms of cellular response in E10 mouse alveolar epithelial cells in vitro after exposure to multi-walled CNTs (MWCNTs) that were functionalized by atomic layer deposition (ALD). ALD is a method used to generate highly uniform and conformal nanoscale thin-film coatings of metals to enhance novel conductive properties of CNTs. We hypothesized that specific types of metal oxide coatings applied to the surface of MWCNTs by ALD would determine distinct proteomic profiles in mouse alveolar epithelial cells in vitro that could be used to predict oxidative stress and pulmonary inflammation. Uncoated (U)-MWCNTs were functionalized by ALD with zinc oxide (ZnO) to yield Z-MWCNTs or aluminum oxide (Al2O3) to yield A-MWCNTs. Significant differential protein expression was found in the following critical pathways: mTOR/4E-F/p70S6K signaling and Nrf-2 mediated oxidative stress response increased following exposure to Z-MWCNTs, interleukin-1 signaling increased following U-MWCNT exposure, and inhibition of angiogenesis by thrombospondin-1, oxidative phosphorylation, and mitochondrial dysfunction increased following A-MWCNT exposure. This study demonstrates that specific types of metal oxide thin film coatings applied by ALD produce distinct cellular and biochemical responses related to lung inflammation and fibrosis compared to uncoated MWCNT exposure in vitro.

Keywords: Al2O3; aluminum oxide; A-MWCNT: aluminum oxide-coated multi-walled carbon nanotubes; ALD: atomic layer deposition; CNTs: carbon nanotubes; DDA: data dependent acquisition; HPLC: high-performance liquid chromatography; IT: intratracheal instillation; IPA: ingenuity pathway analysis; LC–MS/MS: liquid chromatography tandem mass spectrometry; MWCNT: multi-walled carbon nanotubes; NIEHS: National Institute of Environmental Health Sciences; PTMs: post-translational modifications; PCA: principal component analysis; SRM: selected reaction monitoring; SWCNT: single-walled carbon nanotubes; U-MWCNT: un-coated multi-walled carbon nanotubes; Z-MWCNT: zinc oxide-coated multi-walled carbon nanotubes.

Introduction
Carbon nanotubes (CNTs), nanomaterials resembling rolled sheets of graphene, are quickly emerging in the field of nanotechnology due to extraordinary applications in electronics, engineering, and medicine (Donaldson et al., 2006). Multi-walled (MW) CNTs are used primarily to increase the tensile strength of a variety of polymers in the electronics and semi-conductor industry (Eatemadi et al., 2014). Multi-walled CNTs (MWCNTs) are being developed for a wide range of applications including electronics, energy storage and incorporation into polymers (Prato et al., 2008; Singh & Kruse, 2008). For some applications, surface modification or thin film coatings on the MWCNTs can add enhanced functionality to improve electronic or physical performance. Atomic layer deposition (ALD) is a novel process to generate highly uniform and conformal nanoscale thin-film coatings, including: metal oxides, metals, and hybrid metal/organic materials (Hyde et al., 2009; Parsons et al., 2011; Peng et al., 2007). While CNTs are quickly evolving for numerous applications, the fact still remains that they possess fiber-like physical characteristics similar to asbestos (Poland et al., 2008), a material that has resulted in hundreds of thousands of cases of pulmonary fibrosis and mesothelioma (WHO, 2015). In addition to their fiber-like structure, CNTs have been reported to exhibit varying degrees of toxicity depending on factors including: length, width, residual metal content, agglomeration status, and surface functionalization, which are thought to contribute to pulmonary inflammation and disease (Madani et al., 2013).
Pulmonary fibrosis is a fatal disease that is characterized by scarring of the lung tissue, which ultimately results in impaired lung function (NIH, 2011). Rodent studies have shown that pulmonary exposure to SWCNTs or MWCNTs by inhalation, instillation, or oropharyngeal aspiration (OPA) results in pulmonary fibrosis (Mercer et al., 2011). In addition to in vivo studies of fibrogenesis in experimental animals, in vitro studies have also shown that MWCNT exposure induces the production of growth factors and cytokines involved in the fibrogenic response, which is largely initiated through oxidative stress mechanisms (Cheresh et al., 2013; He et al., 2011). In particular, the alveolar epithelium is the primary target of CNT deposition in the distal lung and therefore alveolar epithelial cells are an appropriate cell type to elucidate mechanisms of CNT-induced lung disease in vitro (Bonner, 2010).

We previously investigated the pulmonary toxicity of ALD-functionalized MWCNTs, coated with either aluminum oxide (A-MWCNT) or zinc oxide (Z-MWCNT), in mice in vivo after delivery to the lungs by OPA (Dandley et al., 2016; Taylor et al., 2014). In these studies, we compared in vivo induction of pro-inflammatory and pro-fibrogenic cytokines in the bronchoalveolar lavage fluid (BALF) from mice with production of cytokines by human THP-1 monocytic cells. A-MWCNT caused less pulmonary fibrosis in mice compared to uncoated MWCNTs (U-MWCNTs) and caused reduced levels of pro-inflammatory and pro-fibrogenic cytokines (interleukin-6, tumor necrosis factor-alpha, osteopontin) in THP-1 cells in vitro (Taylor et al., 2014). Z-MWCNTs caused a similar degree of pulmonary fibrosis compared to U-MWCNT, but caused marked acute lung and systemic inflammation in mice with high levels of interleukin-6 that corresponded to exaggerated levels of interleukin-6 induced by Z-MWCNTs in THP-1 cells in vitro (Dandley et al., 2016). These studies highlighted vastly different pathologic and molecular responses to different ALD-MWCNTs in mice that could be partly predicted by cytokine profiles from THP-1 cells, but were limited by the measurement of only a few cytokine biomarkers of inflammation and fibrosis. To better understand underlying cellular mechanisms of response to various ALD-coated MWCNTs, cutting-edge tools emerging in measurement science, i.e. liquid chromatography tandem mass spectrometry (LC-MS/MS), offer superior advantages to identify a large number of proteins in an unbiased manner to rapidly elucidate toxicity of functionalized MWCNTs.

Mass spectrometry (MS) based proteomics is a powerful “omics” method used in measurement science to evaluate global changes in proteins; examples include: analysis of post-translational modifications (PTMs), identification of protein-protein interaction (PPI), and changes in protein abundance due to system perturbation. Recent reports have suggested that the proteome serves as a direct mediator between toxicants and the resulting cellular response to insult (Costa & Fadeel, 2015). Currently, LC-MS/MS is a prevailing analytical tool used in proteomics due to its high sensitivity and unparalleled molecular specificity. Fortunately, proteomics can be used to generate large amounts of data that represent the cellular state by examining changes in protein expression upon toxicant exposure. Due to the large amount of data generated in proteomic experimentation, enrichment analyses, such as pathway analysis, are helpful to find biological changes that result from differential protein expression (Schmidt et al., 2014). More specifically, enrichment analysis serves to identify over-represented groups of proteins that can be further associated with a specific pathway or function. Changes in biological pathways that are associated with groups of differentially expressed proteins can serve as a signature to specific perturbations in a biological system. Enriched pathways help to highlight proteins of interest for further examination, and ultimately identify markers that can help predict toxicant response.

In this study, we postulated that specific types of metal oxide coatings applied to the surface of MWCNTs by ALD would determine distinct proteomic profiles in mice alveolar epithelial cells in vitro that could be used to predict oxidative stress and pulmonary inflammation. Herein, we investigated changes in protein expression as a function of MWCNT coating by using a combination of shotgun and targeted proteomic methods. The E10 cell line, isolated from normal mouse alveolar epithelial tissue, was used to create an in vitro model of MWCNT exposure (Yamamoto et al., 2012). The following pathways were enriched for significant differences in protein expression as a function of MWCNT coating type: mTOR signaling from Z-MWCNT exposure, mitochondrial dysfunction and oxidative phosphorylation (OXPHOS) signaling from A-MWCNT exposure, and interleukin-1 (IL-1) signaling from uncoated-MWCNT exposure. These studies provide key insight into the mechanisms of cellular response upon in vitro exposure to functionalized MWCNT.

Materials and methods

CMRL cell medium 1066-1x, fungizone antimitotic (F2), fetal bovine serum (FBS), glutamine, penicillin-streptomycin, Trump’s transimion electron microscopy (TEM) fixative, noble agar, and the Pierce lactate dehydrogenase (LDH) assay kit were purchased from Thermo Fisher Scientific (Waltham, MA). Acetic acid, ammonium bicarbonate, sodium deoxycholate (SDC), diethioctetrol (DTT), iodoacetamide (IAM), formic acid (FA), ammonium hydroxide, hydrochloric acid (HCl), and bovine serum albumin (BSA) were obtained from Sigma Aldrich (St. Louis, MO). Diethylzinc (DEZ) and trimethylaluminum (TMA) were purchased through Strem Chemicals at a minimum 98% purity (Newburyport, MA). Multi-walled carbon nanotubes (MWCNTs) were purchased at Helix Materials Solutions, Inc. (Richardson, TX) at 0.5–40 μm in length. P-type (100) silicon substrates were acquired through University Wafers (Boston, MA). High purity nitrogen gas was purchased from Machine & Welding Supply Co. (Dunn, NC). Conge grade trypsin was purchased from Promega (Madison, WI). HPLC grade water, methanol, and acetonitrile were purchased from WVR International (Morrisville, NC). Oasis MCK 30 μm particle size solid phase extraction cartridges were obtained from Waters (Milford, MA).

MWCNTs 0.5–40 μm in length were synthesized by chemical vapor deposition. Characterization of the MWCNTs was provided by the manufacturer and verified by Millennium Research Laboratories (Woburn, MA) (Ryman-Rasmussen et al., 2009). Some of the MWCNTs were coated with conformal nanoscale thin films of aluminum oxide (Al2O3) or zinc oxide (ZnO) by ALD (Figure 1). Zinc oxide coating was achieved by co-reacting DEZ and deionized (DI) water. The Al2O3 layer was achieved using sequential saturated exposures of TMA (Al(CH3)3) and water. Both reactions were conducted in a custom made, viscous-flow, hot-walled, vacuum reactor and purged with high purity nitrogen gas, and then further purified with an Entegris GateKeeper upstream from the reactor input (Gong et al., 2011; Jur et al., 2010; Spagnola et al., 2010). TEM and mass gain were used to monitor the growth rate for the Al2O3 and ZnO ALD coating process on MWCNTs; both types of nanotubes used in this study had a coating of roughly 10 nm. The details of ALD coating of CNTs have been previously described (Dandley et al., 2016; Devine et al., 2011; Taylor et al., 2014).

Nanomaterials

The E10 cell line, isolated from normal mouse alveolar epithelial tissue, was used to create an in vitro model of MWCNT exposure (Yamamoto et al., 2012). The following pathways were enriched for significant differences in protein expression as a function of MWCNT coating type: mTOR signaling from Z-MWCNT exposure, mitochondrial dysfunction and oxidative phosphorylation (OXPHOS) signaling from A-MWCNT exposure, and interleukin-1 (IL-1) signaling from uncoated-MWCNT exposure. These studies provide key insight into the mechanisms of cellular response upon in vitro exposure to functionalized MWCNT.

Materials and methods

CMRL cell medium 1066-1x, fungizone antimitotic (F2), fetal bovine serum (FBS), glutamine, penicillin-streptomycin, Trump’s transmission electron microscopy (TEM) fixative, noble agar, and the Pierce lactate dehydrogenase (LDH) assay kit were purchased from Thermo Fisher Scientific (Waltham, MA). Acetic acid, ammonium bicarbonate, sodium deoxycholate (SDC), diethioctetrol (DTT), iodoacetamide (IAM), formic acid (FA), ammonium hydroxide, hydrochloric acid (HCl), and bovine serum albumin (BSA) were obtained from Sigma Aldrich (St. Louis, MO). Diethylzinc (DEZ) and trimethylaluminum (TMA) were purchased through Strem Chemicals at a minimum 98% purity (Newburyport, MA). Multi-walled carbon nanotubes (MWCNTs) were purchased at Helix Materials Solutions, Inc. (Richardson, TX) at 0.5–40 μm in length. P-type (100) silicon substrates were acquired through University Wafers (Boston, MA). High purity nitrogen gas was purchased from Machine & Welding Supply Co. (Dunn, NC). Conge grade trypsin was purchased from Promega (Madison, WI). HPLC grade water, methanol, and acetonitrile were purchased from WVR International (Morrisville, NC). Oasis MCK 30 μm particle size solid phase extraction cartridges were obtained from Waters (Milford, MA).
Preparation of MWCNTs

Uncoated MWCNTs, aluminum oxide coated (A-MWCNT), and zinc oxide coated (Z-MWCNT) were weighed using a milligram scale (Mettler, Toledo, OH) suspended in a sterile 0.1% pluronic F-68 (Sigma-Aldrich, St. Louis, MO) phosphate buffer solution to achieve the final concentration of 10 mg/mL. Vials containing the suspended nanomaterials were dispersed using a cuphorn sonicator (Qsonica, Newton, CT) at room temperature for 1 minute prior to dosing. The A-MWCNT and Z-MWCNT concentrations were normalized to the U-MWCNT nanoparticle number in order to account for the mass increase caused by the surface modification of the CNT. The A-MWCNT was dosed at 2.5 times the U-MWCNT dose and the Z-MWCNT were dosed at 2.85 times the U-MWCNT dose. A limulus amebocyte lysate chromogenic assay (Lonza Inc., Walkersville, MD) was used to test the nanomaterials for endotoxin contamination. All MWCNTs tested negative (<0.3 EU/mL) for endotoxin.

**Dynamic light scattering analyses**

U-MWCNT, A-MWCNT and Z-MWCNT suspensions were made as described in the preparations of MWCNTs section. Hydrodynamic diameter, size distribution and zeta potential of the freshly prepared suspensions in E10 cell culture media (Supplemental Method-Cell Culture) were determined using dynamic light scattering (ZetaSizer Nano, Malvern Instruments, Westborough, MA) as described previously (Hussain et al., 2014). Electrophoretic mobility

Figure 1. Transmission electron microscopy (TEM) of uncoated MWCNTs and ALD-coated MWCNTs. (A) Uncoated (U)-MWCNTs. (B) Al2O3-coated (A)-MWCNTs. (C) ZnO-coated (Z)-MWCNTs. Fifty cycles of ALD were applied to A-MWCNTs and Z-MWCNTs.
was converted into zeta potential using the Helmholtz–Smoluchowski equation (Supplemental Table 1).

Cell culture

E10 alveolar epithelial cells were provided as a kind gift from Dr. Michael Fessler at the National Institute of Environmental Health Sciences (NIEHS) and were originally derived from the laboratory of Dr. Joseph Mizgerd at Boston University School of Medicine (Yamamoto et al., 2012). The E10 cell culture was maintained as described in Supplemental Method-Cell Culture.

Experimental design

A Latin square block design was used for the experimental setup of the MWCNT E10 cell dosing in order to control for plate affect, thus reducing experimental bias (Figure 2). Every treatment (i.e. dose) was assigned a random number using a random number generator, and was then dosed accordingly as a Latin square design. Each dose and coating type had four replicates to account for biological variability; also known as biological replicates. Six-well plates contained two control wells (no MWCNT exposure) and four treatments wells (MWCNT exposure) (Gumpertz, 2004). A total of 36 cell culture samples were collected, one of the samples was randomly picked and was digested twice to generate technical replicates, and 10 samples were run as analytical replicates on the orbitrap LC-MS/MS (48 injections total). A detailed description of the cellular MWCNT exposure and isolation can be found in Supplemental Method-Exposure and Isolation.

Cytotoxicity assay

An LDH assay was conducted to evaluate cytotoxicity in order to ensure appropriate dose concentration by coating type (Scientific, 2015). The E10 cells were exposed to U-, A-, and Z-MWCNT in the following concentrations to establish a dose response curve: 0, 5, 10, 25, 50, and 100 μg/mL (see above sections for how MWCNT were prepared for dosing). The LDH assay was conducted on 50 μL samples of media from MWCNT cell culture exposure with two replicates per sample. Absorbance was measured using a multiskan™ microplate photometer (Thermo Fisher, Waltham, MA), and the percent cytotoxicity was calculated by the manufacture’s protocol.

Protein digestion and LC–MS/MS

Details regarding the in-solution protein digestion are provided in Supplemental Methods-Protein Digestion. Nanoflow liquid chromatography (LC) was conducted using the Thermo Scientific Easy-nLC 1000 Liquid Chromatography system. Details regarding all LC methods can be found in Supplemental Method-Nanoflow LC (Supplemental Table 2). Methods for global tandem MS data collection using a dependent acquisition mode (DDA), and targeted MS data collected using a selected reaction monitoring (SRM) are thoroughly described in Supplemental Method-Mass Spectrometry.

Database search

Database searches were conducted using Proteome Discoverer 1.4 and the Sequest hyper-threaded algorithm. Data were searched against the Mus Musculus Swiss Prot protein database (number of sequences: 16,657, date accessed: 30 June 2015) (Bairoch, 1996). Peptide spectrum matches were post processed using percolator (Kall et al., 2007) to enforce a peptide spectral match threshold of less than 0.01 q value, the minimal false discovery threshold to which a spectral identification is accepted as correct. The law of strict parsimony was used for protein inference and grouping (Zhang et al., 2007).

Data analysis

Peak area data generated from Proteome Discoverer label free node were exported as a text file, and further analyzed using R version 3.2.2. Protein peak area was first log10 transformed and plotted as box-and-whisker plots to ensure all samples maintained roughly the same minimum, median, and maximum peak area values (Supplemental Figure 1). In order to remove proteins that generated inconsistent results, the data were filtered by retaining proteins that had detection in at least three out of four biological
replicates (i.e. protein maintained signal in 75% of the biological replicates within control or exposure groups). Additionally, proteins were retained if they did not have signal across all biological replicates in one group (i.e. all of the A-MWCNT 100 µg/mL dosed samples did not have expression for protein x, but all of the U-MWCNT 100 µg/mL dosed samples had expression for protein x). Thus, proteins were removed from the protein list if peak area signal was inconsistent within a class of samples. Data were then central tendency median normalized, followed by imputation of missing values with the minimum peak area across entire data set (Karpievitch et al., 2012). Principal component analysis (PCA) was used to screen for potential confounding effects; such as plate effects. A two-sample Welch’s t-test was conducted by pairwise comparison of protein peak area across each exposure compared to control. Analysis of variance (ANOVA) was conducted using Equation (1), and results can be found in Supplemental Method-ANOVA. Ingenuity pathway analysis (IPA) was used for enrichment analysis (IPA, 2016). Targeted peak area data were examined and exported from skyline-daily for further analysis.

\[
\text{Peak Area} = \text{Intercept} + \text{Dose} + \text{Coating}
\]  
Equation 1: Analysis of variance model of peak area for proteins in common across each coating type.

**Orbitrap LC–MS/MS**

The E10 data set contained 48 LC–MS/MS runs, including: biological, technical, and analytical replicates. An average of 2200 protein groups were identified by LC–MS/MS in DDA mode. After filtering, normalizing, and imputing (as described in “data analysis” section), 1576 proteins were retained for further expression analysis.

**Triple quadrupole LC–MS/MS**

While DDA is a powerful method to assess global proteomics, the nature of the method yields the potential for incomplete sampling of peptides (Michalski et al., 2011), thus verification of relative protein abundance is ideal for confirming accurate quantitation. We verified differential protein abundance from the discovery proteomics experiment using a triple quadrupole mass spectrometer operating in SRM mode. Proteins were screened for the verification to represent high and low abundance. A single unique peptide was chosen as a proxy for protein abundance and the method was exported using Skyline. Raw data were imported into the created Skyline template and each individual peptide was manually evaluated to ensure retention time reproducibility, high dot product (>0.8, match between discovery and targeted data), and proper integration boundaries. A pairwise comparison of peptide abundance for each MWCNT exposure versus control (i.e. A-MWCNT versus control) was conducted in order to represent expression fold change for validation of the DDA data with targeted SRM data (Supplemental Figure 2). Pearson’s correlation coefficient indicated the discovery differential proteomics data strongly correlated with the targeted proteomics data \( r = 0.9635 \) (Supplemental Table 3).

**Results**

**Exposure dose–response**

A general overview of the experimental design is illustrated in Figure 2. Dose–response curves were generated for the E10 cell line by exposing cells to the following doses of U-MWCNT, A-MWCNT, and Z-MWCNT: 0, 1, 5, 10, 50, and 100 (µg/mL) (Figure 3). Both U-MWCNT and A-MWCNT showed no cytotoxicity according to the LDH assay; however, the Z-MWCNT showed 100% cytotoxicity at the 10 µg/mL dose. The dose–response results were used to set a “low” and “high” exposure range for the dosing of E10 cells. The following doses were given in biological replicates of 4: U-MWCNT dosed at 5 and 100 µg/mL, A-MWCNT dosed at 5 and 100 µg/mL, and Z-MWCNT was dosed at 2.5 and 5 µg/mL (lower dose of Z-MWCNT to adjust for cytotoxicity).

**Characterization of MWCNTs in cell culture media**

Dry U-MWCNTs have been previously characterized in terms of length, width, residual metals and agglomeration status (Ryman-Rasmussen et al., 2009). U-MWCNTs are 30–50 nm in diameter and have a heterogeneous range of 0.3–50 µm in length, and a surface area of 40–300 m²/g. A-MWCNTs and Z-MWCNTs produced by ALD coating of U-MWCNTs have also been thoroughly characterized—width, length, and thickness of metal oxide coating and the details of these ALD-functionalized tubes are previously published (Dandley et al., 2016; Taylor et al., 2014).

We also sought to characterize these nanomaterials after addition to the cell culture media used for maintaining E10 cells. Specifically, we measured hydrodynamic diameter as an indication of MWCNT agglomeration size in media and zeta potential as an index of surface charge (Supplemental Table 1). A-MWCNTs and Z-MWCNTs had reduced hydrodynamic diameters (416 nm and 192 nm, respectively) compared to U-MWCNTs (567 nm), indicating less agglomeration and better dispersion. A-MWCNTs and Z-MWCNTs did not have significantly different zeta potential or polydispersity indices, indicating that the ALD coatings applied to MWCNTs did not alter surface charge.

**TEM imaging**

TEM images of the E10 cells dosed in this experiment clearly show each type of MWCNT were taken up by the alveolar epithelial cells (Figure 4A–C). The Al₂O₃ coating on A-MWCNTs remained intact after cellular uptake (Figure 4B). Interestingly, U-MWCNTs were similar to Z-MWCNT in appearance after uptake by epithelial cells (Figure 4A,C, respectively), indicating that the Z-MWCNT coating was lost. Our previous work demonstrated that Zn²⁺ ions are released after Z-MWCNTs are added to cell culture media, indicating at least partial dissolution of the ALD coating (Dandley et al., 2016). Other studies have indicated that partial dissolution of ZnO nanoparticles occurs in the cell media but complete dissolution of the nanoparticles likely occurs within the cell.
Methods used for TEM preparation can be found in Supplemental Methods-TEM imaging.

E10 proteomic expression changes

Of the 1576 proteins retained for global expression analysis, the following number of proteins were found to be significant by t-test ($p < .05$) at the highest dose of each exposure (i.e. 100 $\mu$g/mL for U- and A-MWCNT, and 5 $\mu$g/mL Z-MWCNT): 138 U-MWCNT versus control, 210 A-MWCNT versus control, 103 Z-MWCNT versus control (Supplemental Table 4). Fewer proteins were found to be significant in each "low" dose exposure, and results can be found in Supplemental Table 5. Due to the limited significance found in the low dose exposure, the results will not be discussed herein. Further analysis was conducted on the "high" dose exposure to evaluate if the same proteins shared significance across each exposure type versus control to possibly indicate shared cellular response mechanisms. Interestingly, Venn diagrams plotted by categories of "increased" and "decreased" regulation of significantly differentially expressed proteins by t-test show little overlap in commonly significant proteins (Figure 5). Common proteins found for increased expression by exposure compared to control include: hemoglobin (Hb) subunit beta, Hb subunit gamma, and proteolipid protein 2. The common protein found for the decreased expression is fatty acid synthase.

Pathway analysis

Pathway analysis was conducted using IPA on the significant proteins for each MWCNT exposure compared to control. First, all of the significantly differentially expressed proteins, separated by increased or decreased expression relative to the control, were imported into IPA one MWCNT exposure group at a time. Pathways for each MWCNT exposure were generated in IPA.

Figure 4. TEM images of E10 cell exposure. (A) 5 $\mu$g/mL U-MWCNT exposure, (B) 5 $\mu$g/mL A-MWCNT, and (C) 1 $\mu$g/mL Z-MWCNT. Arrows indicate MWCNTs within the cytoplasm of E10 cells.
using the core analysis search, and the search species was specified as mouse. Comparison analyses were then conducted on each set of enriched pathways for exposure compared to control. Results shown in Figure 6 illustrate heat maps generated in R using the data output from IPA to compare pathways with increased pathway enrichment (Figure 6(A)), and suppressed pathway enrichment (Figure 6(B)) for exposure relative to control. The heat maps were re-created in R by transforming the \(-\log_{10} p\) value output from IPA into Z scores, with dark red being the most significant \(p\) value and dark blue being the least significant. Supplemental Table 6 lists the \(-\log_{10} p\) value associated with each pathway across every MWCNT exposure. While several pathways exhibit significant differential protein expression, the following pathways will be discussed herein to better highlight the unique proteomic responses as a function of MWCNT coating type: inhibition of angiogenesis by thrombospondin-1 (TSP-1), mTOR/eIF4/p70S6K signaling, OXPHOS, IL-1 signaling, and Nrf-2 type: inhibition of angiogenesis by TSP-1, mTOR/eIF4/p70S6K signaling, OXPHOS.

**Nrf-2 mediated oxidative stress response**

The nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response pathway has been established as a significant survival response upon exposure to various environmental toxicants that are known to cause oxidative stress (Kensler et al., 2007). More specifically, the activation of the Nrf2 signaling pathway is inversely proportional to inflammatory and pro-fibrotic cytokines. Studies have shown the importance of Nrf2 activation by exposing Nrf2 knockout mice to MWCNTs, which yielded excessive oxidative stress relative to the control exposure (Dong & Ma, 2015). Of the exposures given in this study, Z-MWCNT had the most significant enrichment for the Nrf2 mediated oxidative stress response relative to control with eight proteins showing significant increased enrichment relative to control (pathway enrichment \(p\) value = 2.80E-07).

Our previous investigation revealed that Z-MWCNT exposure to THP-1 cells in vitro stimulates pro-inflammatory cytokine expression (Dandley et al., 2016). This pro-inflammatory pulmonary stress response has been routinely quantified by measuring antioxidant gene expression, such as heme oxygenase 1 (HO-1), and other proteins downstream of Nrf2 signaling (Figure 7(A)) (van Berlo et al., 2014). Interestingly, ZnO was the only MWCNT coating to demonstrate that either aluminum oxide-coated MWCNT (A-MWCNT) or zinc oxide-coated MWCNT (Z-MWCNT) had both common and unique pathway enrichment that represents significant differences in cellular response compared to U-MWCNT exposure. The following pathway enrichments will be discussed in further detail: Nrf-2 mediated oxidative stress response, IL-1 signaling, inhibition of angiogenesis by TSP-1, mTOR/eIF4/p70S6K signaling, and OXPHOS.

**Interleukin-1 signaling pathway**

The IL-1 family is a group of 11 cytokines which are known to mediate inflammatory response (Dinarello, 2011). Activation of the IL-1 signaling pathway occurs as a stress response in order to produce various pro-inflammatory mediators (Hirano et al., 2010). Several studies have shown that MWCNT exposure causes acute inflammation via inflammation activation and release of IL-1β that binds to specific receptors on a variety of lung cells to mediate acute inflammation (Boyles et al., 2014; Girtsman et al., 2014; Hamilton et al., 2012; Hussain et al., 2014). While the IL-1 proteins were not detected in this study due to potential limitation in dynamic range, downstream proteins showed enrichment for IL-1 signaling activation. Significant enrichment of five proteins downstream of the IL-1 signaling pathway were found in the U-MWCNT exposure (pathway enrichment \(p\) value = 1.620E-06). Of the proteins enriched through the U-MWCNT exposure for IL-1 signaling pathway, mitogen-activated protein kinase 14 (MAPK14) is perhaps the most critical protein due to its essential role in inflammatory cytokine induction (Figure 7(B)) (Han et al., 1994).
MAPK14 was significantly upregulated in the U-MWCNT exposure ($p$ value $= .043$), but not the coated exposures to A- or Z-MWCNT, thus indicating that the alveolar epithelial cells present a stronger downstream IL-1 signaling response to U-MWCNT exposure.

**Inhibition of angiogenesis by thrombospondin-1**

Angiogenesis, the process by which new blood vessels are formed, plays an integral role in the regulation of promoters that contribute to pulmonary hypertension and pulmonary fibrosis (Smith et al., 2013). The regulation of angiogenesis is
A primary control of fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), and heparan sulfate proteoglycans (HSPGs) proteins (Iozzo & San Antonio, 2001). HSPGs can act to inhibit angiogenesis through signaling from TSP-1 (Lawler, 2002). TSP-1 is a matricellular glycoprotein that plays an influential role in the structure of cellular matrix, and can have direct and indirect inhibition of angiogenesis. The direct effects on inhibition occur via TSP-1 signaling to HSPG which inhibit angiogenesis, and indirect effects by TSP-1 binding to and activating transforming growth factor beta (TGF-beta) (Tirado-Rodriguez et al., 2014).

In addition to significant contributions to angiogenesis and pulmonary hypertension, TSP-1 has been reported to have increased expression in malignant mesotheliomas caused by asbestos exposure (Ohta et al., 1999), thus suggesting MWCNT exposure may induce a similar mechanism of cellular response as exposure to asbestos due to similarities in physical properties. The results from this in vitro study show that TSP-1 was significantly upregulated in A-MWCNT (p value = 2.53E-05) and U-MWCNT (p value = .003) exposures (Figure 7(C)). The following proteins were significantly increased in expression upon A-MWCNT exposure and enriched for in the inhibition of angiogenesis signaling pathway: TSP-1 and tyrosin-protein kinase fyn (FYN). Additionally, U-MWCNT exposure drove significant upregulation in TSP-1, FYN, and MAPK14. Ultimately, the A- and U-MWCNT exposures generated significant proteins that were enriched in the inhibition of angiogenesis pathway, thus indicating their contributions to inhibit angiogenesis.

Figure 7. Heat maps of log2 fold change for proteins of MWCNT exposed compared to control for the following pathways of interest: (A) Nrf-2 mediated oxidative stress response, (B) IL-1 signaling, (C) inhibition of angiogenesis by TSP1, (D) mTOR signaling*, (E) eIF4/70S6K signaling*, and (F) oxidative phosphorylation. Log2 fold changes in protein abundance can be read as: increased expression compared to the control (red), and decreased expression compared to the control (blue). *Outliers removed for higher resolution of heat map scaling. Supplemental Table 7 provides full list of proteins and log2 fold change values. Vertical lines to the right or left of the vertical dashed line indicate magnitude of increased or decreased protein expression for each exposure compared to control (respectively).
Figure 7. Continued
mTOR/eIF4/p70S6K signaling pathway

Signaling from mammalian targeting of rapamycin (mTOR), like angiogenesis, has been reported to play a critical role in vascular remodeling and has been implicated for its contributions to pulmonary disease through the progression of pulmonary hypertension (Wang et al., 2015). mTOR signaling can be induced by growth factors, and has also been well established for its contribution to regulating autophagy (He & Klionsky, 2009). Under cellular stress and limited energy, mTOR signaling is repressed and autophagic signaling can be initiated (Dunlop & Tee, 2014). Additional mediators of autophagy that are regulated by mTOR signaling include p70S6k and eIF4 proteins, which are reported to lead to translation of proteins that mediate cell cycle activators, ribosome biogenesis, and angiogenesis (Laplante & Sabatini, 2012). The results from this study show mTOR/eIF4/p70S6K signaling pathways have significant enrichment upon Z-MWCNT exposure (p value = 1.46E−09 mTOR signaling, and p value = 5.59124E−08 eIF4/p70S6K signaling), but not A- and U-MWCNT exposure (Figure 7D,E). Moreover, 10 proteins are significantly upregulated in the Z-MWCNT exposure that are downstream of the mTOR/eIF4/p70S6K signaling pathway, thus indicating activation of signaling by Z-MWCNT compared to control. These results suggest that the Z-MWCNT drive increased expression of protein mediators that contribute to cell proliferation that were not significant in the U-MWCNT and A-MWCNT exposures.

Oxidative phosphorylation

Oxidative phosphorylation is the metabolic pathway comprised of protein complexes that make up the mitochondrial electron transport chain, and function to generate ATP (Hatefi, 1985). OXPHOS signaling is generally associated with mitochondrial function and ultimately affect the oxidative state of the cell, which can serve a critical marker for injury. Several pathways can be initiated in response to a change in oxidative state in the cell, including cell survival or cell death via apoptosis or necrosis (Martindale & Holbrook, 2002). More specifically, there is a sensitive intracellular balance in response to oxidative stress between mitochondrial biogenesis and mitochondrial dysfunction (Suliman & Plantadosi, 2016). Several studies have shown mitochondrial dysfunction as a result of excessive oxidative stress during hyperoxia (Ratner et al., 2009), as well as asbestos exposure (Kamp et al., 2002) and MWCNT exposure (Nymark et al., 2015).

The most significant increased enrichment for the OXPHOS signaling response was found in the A-MWCNT exposure (pathway enrichment p value = 4.26E−10). Proteins associated with the mitochondrial dysfunction pathway were also significantly enriched in the A-MWCNT exposure (p value = 8.50E−11). Of the 14 proteins enriched for mitochondrial dysfunction, 11 were increased in A-MWCNT exposure, and five proteins were increased for U-MWCNT (Figure 7F). Most of the upregulated proteins enriched across both exposures were identified as proteins in the electron transport chain. Overall, the increased expression for the proteins enriched in OXPHOS and mitochondrial dysfunction pathways associated with Al2O3 coated and U-MWCNT exposure may indicate metabolic adaptation to help counter the pro-fibrogenic effect of MWCNT exposure observed in vivo and in vitro (Taylor et al., 2014).

Common protein expression

While most of the proteins upregulated upon exposure to ALD coated and U-MWCNT produced differential expression related to different pathways, one protein showed significant upregulation across every exposure relative to control: hemoglobin (Hb). Alveolar type II epithelial cells have been reported to express Hb in several cell lines, both primary and transformed (Grek et al., 2011). There have also been studies reporting increased Hb expression in response to oxidative stress, thus implicating the pulmonary epithelium may play a role in protection against oxidative/nitrosative stress (Gross & Lane, 1999; Poynter & LeVine, 2003). Both coated and U-MWCNT exposure exhibited increased beta-Hb and gamma-Hb expression compared to the corresponding Hb subunit levels expressed in the control samples (Supplemental Table 4). Note that the alpha-Hb sub-unit was also highly expressed in each MWCNT exposure, but that protein was removed during data filtering due to variable low expression in the control samples. Therefore, a common protective mechanism in response to MWCNT exposure may be through increased Hb expression in order to scavenge free oxygen and nitric oxide species.
In vitro versus in vivo comparison

The proteomic results from the E10 mouse alveolar epithelial cells in vitro studies revealed mechanisms of cellular response that were not characterized in our previous mouse in vivo studies using the same ALD coated MWCNTs (Dandley et al., 2016; Taylor et al., 2014). For example, mice exposed to A-MWCNTs by OPA had elevated levels of IL-1β in BALF compared to animals treated with U-MWCNTs (Taylor et al., 2014). Mice exposed to Z-MWCNTs by OPA exhibited high levels of the acute phase reactant protein IL-6 in BALF (Dandley et al., 2016). However, the endpoints for both of the previous studies were limited to only a few selected cytokines that were measured by ELISA and did not yield a strong bases for comparison for proteomic results. Also, the cytokines measured in the previous in vivo studies could have been produced by cell types other than alveolar epithelial cells such as alveolar macrophages or fibroblasts. Finally, our results in the present study with E10 cells focused only on intracellular proteins since evaluation of secreted proteins would have been confounded by serum proteins present in the cell culture medium. Therefore, there are some limitations of in vitro cell culture experiments for predicting disease outcomes in vivo. Nonetheless, the results of the proteomic analysis of E10 cells in the present study are an important step towards identifying new molecular targets and biomarkers of disease that can be further investigated in future mouse exposure studies.

Conclusions

Given that CNT functionalization will yield a diversity of nanomaterials that have unknown potential to cause pulmonary diseases, more sensitive and high-throughput toxicity screening needs to be developed to raise awareness of unique nanomaterial hazards. Markers for toxicity can be found in differential protein response as a function of CNT coating type. Tools like pathway enrichment can be used to aid the screening process by mapping statistically significant differentially expressed proteins to a biological function. Unique pathway regulation was found in this study through the following results: increased autophagy signaling from Z-MWCNT exposure, increased mitochondrial dysfunction and OXPHOS from A-MWCNT exposure, and increased interleukin-1 signaling from U-MWCNT exposure. Ultimately, this study demonstrates the use of proteomics as a powerful sensitive measurement technique that can unravel differential cellular protein expression in cultured lung epithelial cells as a function of CNT coating type. Moreover, these differential cellular protein expression profiles may be useful towards screening CNTs for toxicity and predicting hazard for human exposure.

Acknowledgements

The authors acknowledge support from the National Institute of Environmental Health Sciences (NIEHS) Training Grant: T32 ES007046 (GSH), NIEHS R01ES020897 (JCB, GNP, ECD, AJT), and NIEHS P30ES025128 (MSB, GSH, EHG). This work was also supported (in part) by the NIEHS Intramural Research Program (SH, SG).

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding

The authors acknowledge support from the National Institute of Environmental Health Sciences (NIEHS) Training Grant: T32 ES007046 (GSH), NIEHS R01ES020897 (JCB, GNP, ECD, AJT), and NIEHS P30ES025128 (MSB, GSH, EHG). This work was also supported (in part) by the NIEHS Intramural Research Program (SH, SG).

References


Michalski A, Cox J, Mann M. 2011. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC–MS/MS.


