Precision Medicine Through Treatment Regimes, SMARTs, and Statistics

Marie Davidian

Department of Statistics
North Carolina State University

Colin White Memorial Lecture, Yale School of Public Health
October 1, 2019
Precision medicine

Patent heterogeneity:
- Genetic/genomic profile
- Demographic, physiological characteristics
- Clinical variables
- Medical history, concomitant conditions
- Environment, lifestyle factors
- Adverse reactions, adherence to prior treatment
- Preference
- ...

Clinical decision-making:
- Key *decision points* in the disease/disorder process
- Multiple *treatment options* at each
- A *patient’s characteristics* are implicated in which *treatment options* s/he should receive
Example: Acute leukemia

Two decision points:

- **Decision 1**: Induction chemotherapy (2 options: C₁, C₂)
- **Decision 2**:
 - Maintenance treatment for patients who *respond* (2 options: M₁, M₂)
 - Salvage chemotherapy for those who *don’t respond* (2 options: S₁, S₂)
Example: Children with ADHD

Two decision points:

- **Decision 1**: Initial intervention
 (2 options: medication, behavioral therapy)

- **Decision 2**:
 - Continue initial intervention for children who *respond*
 (1 option: continue)
 - Modify initial intervention for those who *don't respond*
 (2 options: increase dose/intensify, add second intervention)
Clinical decision-making

How are treatment decisions made?

- *Clinical judgment, practice guidelines*
- Synthesis of all *information* on a patient up to the point of a decision to determine next treatment action from among the feasible *options*
- **Goal:** Make the “*best*” decisions leading to the *most beneficial expected outcome* for the patient

Precision medicine: *Inform* clinical decision-making and make it *evidence-based*

- Evidence-based *decision support*
Informing clinical decision-making

At any decision point: Would like a rule that takes as input all available information on the patient to that point and outputs a recommended treatment action from among the possible options.
Informing clinical decision-making

Simplest rules: Take as input no or minimal patient information
 - E.g., acute leukemia
 - Decision 1: Give C_1
 - Decision 2: If response, give M_2, if nonresponse, give S_1
 - Not consistent with precision medicine

Individualized rules: More complex rules incorporating patient information
 - “Tailoring variables”
 - Consistent with precision medicine
Example of individualized rules: Acute leukemia

- **Decision 1:**

 If age < 50 years and WBC < $10.0 \times 10^3/\mu l$, give chemotherapy C_2, otherwise, give C_1

- **Decision 2:**

 If patient responded and baseline WBC < 11.2, current WBC < 10.5, no grade 3+ hematologic adverse event, current ECOG Performance Status ≤ 2, give maintenance M_1, otherwise, give M_2; otherwise

 If patient did not respond and age >60, current WBC < 11.0, ECOG ≥ 2 give S_1, otherwise, give S_2
Treatment regime: Aka *adaptive treatment strategy/intervention*

- A *set of decision rules*, each corresponding to a *decision point*
- Can be *simple* or *individualized/highly tailored*
- Defines an *algorithm* for treating an individual patient

Premise:

- Development of *individualized treatment regimes* based on *data* can *inform* clinical decision-making and make it *evidence-based*
- *Precision medicine*
Single decision

Assume: There is an outcome of interest, e.g., survival time, achievement score

- *Large* outcomes are *good*
- $X =$ all *available information* on the patient
- Set of *treatment options*, e.g., $\{C_1, C_2\} = \{0, 1\}$

Treatment regime d: Comprises a rule $d_1(X)$ such that

$$d_1(X) = 0 \text{ or } 1 \text{ depending on } X$$

- Regime $d = \{d_1\}$
- Can be generalized to > 2 treatment options
Treatment regime

\[d_1(X) = 0 \text{ or } 1 \text{ depending on } X \]

Example regimes: \(X = \{ \text{age, WBC, ECOG, AE, \ldots} \} \)

- Rule involving *cut-offs* or *thresholds*
 \[
 d_1(X) = 1 \text{ (C}_2) \text{ if age } < 50 \text{ and WBC } < 10 \\
 = 0 \text{ (C}_1) \text{ otherwise}
 \]
 written *mathematically* as
 \[
 d_1(X) = \mathbb{I}(\text{age } < 50 \text{ and WBC } < 10)
 \]

- Rule involving *linear combinations*
 \[
 d_1(X) = \mathbb{I}\{\text{age } + 8.7 \log(\text{WBC}) - 60 > 0\}
 \]
Defining an optimal regime

Clearly: An infinite number of rules d_1 and thus regimes d is possible

- The class of all possible regimes \mathcal{D} is infinite
- Can we find the “best” regime in \mathcal{D}?
- I.e., an optimal regime d^{opt} among all possible d?
- What do we mean by optimal?

Optimal decision at the time a patient presents:

- Everything the clinician knows about a patient is contained in X
- Intuitively: For a patient with a particular set of information X, the optimal decision is to give the treatment makes the expected/predicted outcome for such a patient as large as possible
Defining an optimal regime

Can we formalize this?

- I.e., give a precise definition of an optimal regime d^{opt}
- Possible through a formal \textit{statistical causal inference framework} based on \textit{potential outcomes}
- And suggests how to \textit{estimate} an optimal regime from \textit{data}
Causal inference framework

Potential outcomes: For a patient with information X define

- $Y^*(1)$ is the outcome a patient would have under treatment 1
- $Y^*(0)$ similarly

- For any regime d characterized by rule d_1, the outcome a patient would have if treatment were chosen using d is

$$Y^*(d) = Y^*(1) I\{d_1(X) = 1\} + Y^*(0) I\{d_1(X) = 0\}$$

- For any regime d, $E\{Y^*(d)\}$ is the expected (average) outcome across the entire population if all patients were to follow d

- d^{opt} is defined as the regime making $E\{Y^*(d)\}$ as large as possible; i.e.,

$$E\{Y^*(d^{opt})\} \geq E\{Y^*(d)\} \quad \text{for all } d \in D$$
Estimating an optimal regime

Evidence-based: Can we *estimate* d^{opt} satisfying this definition based on *data*?
- I.e., estimate rule $d^{opt}_i(X)$ characterizing d^{opt}

Data: (X, A, Y) from n patients
- $X =$ recorded *baseline characteristics*
- $A =$ treatment option *actually received*
- $Y =$ outcome *actually observed* under treatment A
- $Y = Y^*(A)$
Estimating an optimal regime

Data sources:

- A conventional *randomized clinical trial* comparing treatment options 0 and 1
- An *observational point exposure study* of treatments 0 and 1 satisfying the assumption of *no unmeasured confounders*
- I.e., all characteristics used by clinicians/patients to make treatment decisions are *captured in* X

\[Y^*(0), Y^*(1) \perp A \mid X \]
Estimating an optimal regime

Under these conditions: Can show for any regime \(d = \{d_1\} \)

\[
E\{Y^*(d)\} = E_X\left[E(Y|X, A = 1)\mathbb{I}\{d_1(X) = 1\} + E(Y|X, A = 0)\mathbb{I}\{d_1(X) = 0\} \right]
\]

- \(E(Y|X, A = 1) \) is the expected/predicted observed outcome for a patient with characteristics \(X \) who receives treatment \(A = 1 \)
- \(E(Y|X, A = 0) \) similarly

Optimal regime \(d^{opt} \) has rule:

\[
d_1^{opt}(X) = \begin{cases}
0 & \text{if } E(Y|X, A = 1) \leq E(Y|X, A = 0) \\
1 & \text{if } E(Y|X, A = 1) > E(Y|X, A = 0)
\end{cases}
\]

- Chooses the option that makes expected/predicted outcome for a patient with characteristics \(X \) as large as possible
Estimating an optimal regime

\[
d_{1}^{\text{opt}}(X) = \begin{cases}
0 & \text{if } E(Y|X, A = 1) \leq E(Y|X, A = 0) \\
1 & \text{if } E(Y|X, A = 1) > E(Y|X, A = 0)
\end{cases}
\]

- \(E(Y|X, A)\) is the \textit{regression} of observed outcome on characteristics and treatment option received

Suggests: Develop a \textit{regression model} and \textit{fit} to the data

- E.g., if \(X^{(1)}, X^{(2)}\) are functions of \(X\), a \textit{linear regression} model (need \textit{not} be linear)

\[
E(Y|X, A) = \alpha_0 + \alpha_1^T X^{(1)} + A(\beta_0 + \beta_1^T X^{(2)})
\]

- Or a \textit{logistic regression} model

\[
\text{logit}\{ E(Y|X, A) \} = \alpha_0 + \alpha_1^T X^{(1)} + A(\beta_0 + \beta_1^T X^{(2)})
\]
Estimating an optimal regime

$$d_{1}^{opt}(X) = \begin{cases}
0 & \text{if } E(Y|X, A = 1) \leq E(Y|X, A = 0) \\
1 & \text{if } E(Y|X, A = 1) > E(Y|X, A = 0)
\end{cases}$$

Models imply: Form of rules (algebra)

$$d_{1}^{opt}(X) = \begin{cases}
0 & \text{if } \beta_0 + \beta_1^T X^{(2)} \leq 0 \\
1 & \text{if } \beta_0 + \beta_1^T X^{(2)} > 0
\end{cases}$$

Estimated optimal rule: Substitute estimates for β_0, β_1

$$\hat{d}_{1}^{opt}(X) = I(\hat{\beta}_0 + \hat{\beta}_1^T X^{(2)} > 0)$$

Fancier models: The same idea applies to more flexible models, such as those from machine learning
Estimating an optimal regime

Other approaches:

- Restrict attention to a class of regimes with rules of a particular form \(d_1(X; \eta_1) \), e.g., acute leukemia

\[
d_1(X; \eta_1) = \mathcal{I}(\text{age } < \eta_{11} \text{ and WBC } < \eta_{12}), \quad \eta_1 = (\eta_{11}, \eta_{12})
\]

and maximize an estimator for \(E\{Y^*(d)\} \) directly in \(\eta \)

- Can choose the restricted class of regimes for interpretability, ease of implementation, etc

- Can recast this as a classification problem and use established machine learning methods to determine the form of the rule (e.g., SVM, CART)

- Estimated optimal rule is a "black box"

- Can be considered a form of artificial intelligence
Result: From any of these approaches

- An estimated *evidence-based optimal regime* based on *formal statistical principles* that can be used to inform selection of treatment
- Provides *evidence-based decision support*
- Insight on *key characteristics (tailoring variables)* that should be incorporated in decision-making
Example: Acute leukemia

Two decision points:

- **Decision 1**: Induction chemotherapy (2 options: C₁, C₂)
- **Decision 2**:
 - Maintenance treatment for patients who *respond* (2 options: M₁, M₂)
 - Salvage chemotherapy for those who *don’t respond* (2 options: S₁, S₂)
Multiple decisions

Two decisions (leukemia example):

- **Decision 1:** $X_1 = \text{information available at baseline, set of treatment options, e.g., } \{C_1, C_2\}$
- **Decision 2:** $X_2 = \text{additional information collected between Decisions 1 and 2, treatment options, e.g., } \{M_1, M_2, S_1, S_2\}$
- X_2 includes responder status

Regime: A set of rules $d = \{d_1, d_2\}$

- $d_1(X_1)$ dictates treatment at Decision 1 given information available at that point, X_1
- a_1 is treatment determined by X_1 at Decision 1, i.e., $d_1(X_1)$
- $d_2(X_1, a_1, X_2)$ dictates treatment at Decision 2 given all accrued information at that point, (X_1, a_1, X_2)
Optimal regime d^{opt}: Intuitively, should satisfy

- If a patient with baseline characteristics X_1 were to receive treatment at all decisions according to the rules in

$$d^{opt} = \{d_1^{opt}, d_2^{opt}\},$$

his/her expected/predicted outcome is as large as possible.
Optimal multiple decision regime

Defined in terms of potential outcomes: For options a_1 and a_2 at Decisions 1 and 2

- $X_2^*(a_1)$ is the *potential information* accruing on a patient following a_1 at Decision 1
- $Y^*(a_1, a_2)$ is the outcome a patient *would have* following a_1 at Decision 1 and a_2 at Decision 2
- If a patient were to *follow* the rules in regime d
 - Treatment at Decision 1 is *determined by* X_1, $a_1 = d_1(X_1)$
 - Treatment at Decision 2 is *determined by* X_1 and $X_2^*(a_1)$, $a_2 = d_2\{X_1, a_1, X_2^*(a_1)\}$
- $Y^*(d)$ is the outcome a patient *would have* if treatments a_1 and a_2 at Decisions 1 and 2 were chosen using d

Optimal regime: d^{opt} makes $E\{Y^*(d)\}$ as large as possible
Can we estimate d^{opt} from data?

- Can we use *data* and *regression modeling* at *each decision point* as before?
- I.e., consider each decision *separately* and use data from *separate* studies comparing the options at each?
- *Not quite*...
Complications for multiple decisions

Delayed effects: For example

- \(C_1 \) may not appear best initially in terms of response but may have enhanced effectiveness over the long term for survival when followed by \(M_1 \)
- Result – Must use data from a single study (same patients) reflecting the entire sequence of decisions

Required data: \((X_1, A_1, X_2, A_2, Y)\) recorded from \(n\) patients

- \(A_1 \) = treatment actually received at Decision 1
- \(A_2 \) = treatment actually received at Decision 2
- \(X_2 \) = intervening information actually observed
- \(Y \) = outcome actually observed
- \(Y = Y^*(A_1, A_2) \)
Longitudinal observational study:

- Records baseline, intervening information and treatments actually received
- **Challenge:** All characteristics used by clinicians/patients to select treatment options *at all decisions* must be captured in X_1, X_2
- Must satisfy a *no unmeasured confounders* assumption at *every* decision point

Clinical trial?
SMART: Sequential, Multiple Assignment, Randomized Trial

- Randomize subjects at each decision point
- Record treatments A_1 and A_2 received
- Collect not only baseline information X_1 but intervening information X_2

Advantages:

- Allows evaluation of simple regimes (treatment sequences)
- Yields rich data for estimation of an optimal treatment regime

Pioneered by Susan Murphy, Phil Lavori, and others
Acute Leukemia: Randomization at s

SMART

Cancer

C_1

C_2

Response

No Response

Response

No Response

M_1

M_2

S_1

S_2
Two decision points:

- **Decision 1**: Initial intervention
 (2 options: medication, behavioral therapy)

- **Decision 2**:
 - Continue initial intervention for children who *respond*
 (1 option: continue)
 - Modify initial intervention for those who *don’t respond*
 (2 options: increase dose/intensify, add second intervention)
Children with ADHD: Randomization at

ADHD

- **Medication**
 - Response
 - Continue Medication
 - No Response
 - Increase Medication Dose
 - Add Behavioral Therapy

- **Behavioral Therapy**
 - Response
 - Continue Behavioral Therapy
 - No Response
 - Intensify Behavioral Therapy
 - Add Medication
Embedded regimes in a SMART

Leukemia SMART: *Embeds* 8 simple regimes/sequences

1. *Give C*$_1$ followed by *M*$_1$ if response, else *S*$_1$ if nonresponse
2. *Give C*$_1$ followed by *M*$_1$ if response, else *S*$_2$ if nonresponse

7. *Give C*$_2$ followed by *M*$_2$ if response, else *S*$_1$ if nonresponse
8. *Give C*$_2$ followed by *M*$_2$ if response, else *S*$_2$ if nonresponse
Embedded regimes in a SMART

ADHD SMART: Similarly *embeds* 4 simple regimes

1. *Medication followed by increased dose if nonresponse, else continue*
2. *Medication followed by added behavioral therapy if nonresponse, else continue*
3. *Behavioral therapy followed by intensified behavioral therapy if nonresponse, else continue*
4. *Behavioral therapy followed by added medication if nonresponse, else continue*

- In a SMART, *randomization* guarantees there will be subjects whose *actual treatments received* are *consistent with* following *all* of the embedded regimes
- Allows evaluation and comparison of *treatment sequences*
Estimating an optimal regime

Data sources, again:

- **SMART**: Collection of extensive, detailed information at baseline and intermediate to Decisions 1 and 2 supports estimation of an optimal regime
- **Longitudinal observational study**: Depends on quality of information available

Estimating d^{opt}: $d^{opt} = \{ d^{opt}_1(X_1), d^{opt}_2(X_1, A_1, X_2) \}$

- Start at the final decision and work backward
- Backward induction
Sequential regression (Q-learning)

Decision 2: *Given* the patient’s *accrued history to this point*, determine the *optimal rule* to be used *now*

- **Decision 2 options coded** \{0, 1\}; can show

\[
d_2^{opt}(X_1, A_1, X_2) =
\begin{cases}
0 & \text{if } E(Y|X_1, A_1, X_2, A_2 = 1) \leq E(Y|X_1, A_1, X_2, A_2 = 0) \\
1 & \text{if } E(Y|X_1, A_1, X_2, A_2 = 1) > E(Y|X_1, A_1, X_2, A_2 = 0)
\end{cases}
\]

- **\(E(Y|X_1, A_1, X_2, A_2) \)** is the *regression* of outcome on both treatments and all accrued characteristics

- Can develop and fit a *regression model* and *estimate* \(d_2^{opt}(X_1, A_1, X_2) \) as before
Sequential regression (Q-learning)

Decision 1: Trickier

- Decision 1 options coded \{0, 1\}
- Must take into account that the *optimal rule* at Decision 2 will be followed *in the future*
- I.e., \(d_1^{opt}(X_1)\) must select treatment at Decision 1 to make the *expected/predicted outcome* as large as possible *acknowledging that* \(d_2^{opt}(X_1, A_1, X_2)\) will be used to determine treatment at Decision 2
- Best explained by *illustration*
Sequential regression (Q-learning)

Illustration:

- Develop a *regression model* for Decision 2, e.g.,

\[
E(Y|X_1, A_1, X_2, A_2) = \alpha_{20} + \alpha_{21}^{T}X_1^{(1)} + \alpha_{22}^{T}X_2^{(1)} + \alpha_{23}^{T}X_1^{(1)}A_1 \\
+ A_2(\beta_{20} + \beta_{21}^{T}X_2^{(2)} + \beta_{22}A_1),
\]

fit to the data \((X_1, A_1, X_2, A_2, Y)\) from \(n\) subjects, and *estimate*

\[
\hat{d}_{2}^{opt}(X_1, A_1, X_2) = I(\hat{\beta}_{20} + \hat{\beta}_{21}^{T}X_2^{(2)} + \hat{\beta}_{22}A_1 > 0)
\]

- For each subject, obtain

\[
\tilde{A}_2 = \hat{d}_{2}^{opt}(X_1, A_1, X_2),
\]

the estimated *optimal treatment option* at Decision 2 (*may or may not be the same* as \(A_2\) actually received by the subject)
Sequential regression (Q-learning)

Illustration:

- For each subject, form \tilde{Y}, the estimated predicted outcome s/he would have if the optimal option \tilde{A}_2 were received at Decision 2

$$
\tilde{Y} = \tilde{\alpha}_2 + \tilde{\alpha}_2^T X_1^{(1)} + \tilde{\alpha}_2^T X_2^{(1)} + \tilde{\alpha}_2^T X_1^{(2)} A_1 + \tilde{A}_2 (\tilde{\beta}_2 + \tilde{\beta}_2^T X_2^{(2)} + \tilde{\beta}_2 A_1)
$$

- Develop a regression model for Decision 1 with \tilde{Y} as the “outcome,” e.g.,

$$
E(\tilde{Y} | X_1, A_1) = \alpha_{10} + \alpha_1^T X_1^{(1)} + A_1 (\beta_{10} + \beta_{11}^T X_1^{(2)}),
$$

fit to the “data” (X_1, A_1, \tilde{Y}) from n subjects, and estimate

$$
\hat{\alpha}_1^{opt} (X_1) = I(\hat{\beta}_{10} + \hat{\beta}_{11}^T X_1^{(2)} > 0)
$$

- Fancier models are possible (e.g., flexible machine learning)
Estimating an optimal regime

Other approaches:

- Restrict attention to a class of regimes with rules of a particular form $d_1(X_1; \eta_1)$ and $d_2(X_1, A_1, X_2; \eta_2)$ and maximize an estimator for $E\{ Y^*(d) \}$ directly in η
- Can choose the restricted class of regimes for interpretability, ease of implementation, etc
- Can recast estimation at each decision as a classification problem and use established machine learning methods to determine the form of the rules at each decision (e.g., SVM, CART)
- Estimated optimal rules are “black boxes”
- Can be considered a form of artificial intelligence
Evidence-based decision support

Result: From any of these approaches

- An *evidence-based regime* based on *formal statistical principles* that can be used to inform selection of treatment at each decision point
- Provides *evidence-based decision support*
- Insight on *key characteristics (tailoring variables)* that should be incorporated at each decision point
How best to use behavioral interventions to manage cancer patients’ pain?

- **Pain Coping Skills Training (PCST)** – can be *brief* (1 session) or *full* (5 sessions); which is better!
- Further intervention for *responders*? Maintain or intensify for *nonresponders*?
- **Ideally**: Use more *time- and resource-intensive interventions* only for those who need them
- What is the best *intervention sequence*?
- **Optimal intervention regime**?
Optimizing behavioral cancer pain intervention

Figure 1. Trial Design with Focus on Randomization Pattern. (Figure 2 includes full assessment scheme.)

R01 CA202779, PI: Tamara Somers, Duke University Psychiatry and Behavioral Sciences
Optimizing behavioral cancer pain intervention

Eight embedded regimes: First four intervention sequences

1. Start with PCST-Full, PCST-Plus (augment) if nonresponse, PCST-Full maintenance (continue) if response
2. Start with PCST-Full, PCST-Plus (augment) if nonresponse, nothing further if response
3. Start with PCST-Full, PCST-Full maintenance (continue) if nonresponse, PCST-Full maintenance (continue) if response
4. Start with PCST-Full, PCST-Full maintenance (continue) if nonresponse, nothing further if response

Aims:

- Primary analysis: Compare Decision 1 treatments (PCST-Full vs Brief) based on response
- Secondary analysis: Compare embedded regimes on the based on final outcome(s)
- Exploratory analysis: Estimate an optimal regime
I-SPY 2+ platform trial in breast cancer

How to treat women with locally advanced breast cancer who do not respond to initial therapy?

- **I-SPY 2**: Adaptive phase II platform trial, *collaborative effort* of NCI, FDA, industry (FINH Biomarkers Consortium)

- *Adaptive randomization*: Assign as many participants as possible to better options based on data from previous participants

- **I-SPY 2+**: Incorporate *SMART* with repeated randomization of nonresponders
I-SPY 2+ platform trial in breast cancer

P01 CA210961, PI: Laura Esserman, UCSF
Parent messaging and student attendance

October to Mid-December

At Risk Child

Basic Informational Messaging I

Basic Informational Messaging II

Business As Usual (Control)

No Response

Response

Continue BIM I

Augment BIM I

Intensify BIM I

No Response

Response

Continue BIM II

Augment BIM II

Intensify BIM II

January to June

American Institutes for Research, funded by Institute for Education Sciences, US Dept of Education

Precision Medicine Through Regimes/SMARTs/Statistics
Issues

- Flexibility versus interpretability? Machine learning approaches lead to “black boxes” but interpretability may sacrifice performance.
- What if more than one outcome is of interest? E.g., balancing efficacy and toxicity in cancer treatment?
- Design principles (e.g., sample size, primary analysis) for SMARTs? How to do adaptive randomization in a SMART?
- Assessment of uncertainty (e.g., standard errors)?
- Once an optimal regime is estimated, should it be compared to standard of care in a conventional clinical trial?
- Real-time regimes (mHealth)?
Discussion

- *Statistical research* is ongoing to address all of these issues (and is *way ahead* of what is actually being done in practice)
- Thinking in terms of sequential treatment decision making is *gaining acceptance*
- SMARTs and estimation of optimal treatment regimes are *becoming commonplace*

Treatment regimes and SMARTs to develop them are one major approach to achieving precision medicine
Available December 2019
Acknowledgement

IMPACT – Innovative Methods Program for Advancing Clinical Trials

- A *joint venture* of Duke, UNC-Chapel Hill, NC State
- Supported by NCI *Program Project* P01 CA142538 (2010–2020)

http://impact.unc.edu

- Statistical methods for *precision cancer medicine*
Thought leaders

Susan Murphy and Jamie Robins