Overview of preferential sampling for spatial data

Brian Reich

9/23/09

SAMSI Working Group on Model Based Geostatistics and Preferential Sampling
Definition

- Diggle, Menezes, and Su: “Preferential sampling arises when the process that determines the data-locations and the process being modelled are stochastically dependent.”

- This dependence is ignored by typical spatial analyses.

- Ignoring this dependence can negatively affect parameter estimation (covariance and mean parameters) and prediction.
Motivating data set #1 - periodontal data

Missing teeth are associated with cumulative periodontal disease

- Maxillary/Lingual
- Maxillary/Buccal
- Mandibular/Lingual
- Mandibular/Buccal

Tooth Number

Tooth Number	D	MD	MM	DM	D																			
--------------	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	D
7																								
6																								
5																								
4																								
3																								
2																								
1																								
1																								
2																								
3																								
4																								
5																								
6																								
7																								
Motivating data set #2 - scallops data

Fishermen fish where there are many scallops

![Graph showing the relationship between log sampling density and response. The graph includes a 3D scatter plot and a 2D scatter plot with a linear trend line.]
Surely there are many spatial data examples where the presence/absence of an observation is associated with the response.

- Air pollution monitors placed in locations with high pollution.
- Clouds obscuring satellite observations.
- Health of sampled plants or animals.
- Residence of asthma patients.
- Others?
Model for areal data

Reich and Bandyopadhyay, 2009, AOAS

- Let y_i be the response at location i and z_i be the binary indicator of whether y_i is missing.

- Both are modeled in terms of the true value at location i, μ_i.

- Gaussian model for the response: $y_i \sim N(\mu_i, \sigma^2)$

- Probit model for missing observations:

 \[P(z_i = 1) = \Phi(a + b\mu_i) \]

- Spatial model for the truth: $(\mu_1, ..., \mu_n)' \sim \text{CAR}$
Let s_i and y_i be the location and value of the i^{th} observation, respectively.

Both are modeled in terms of the true spatial surface, $\mu(t)$.

Gaussian model for the response: $y_i \sim N(\mu(s_i), \sigma^2)$

Logistic model for the sampling density:

$$p(s_i|\mu) = \frac{\exp(a(s_i) + b\mu(s_i))}{\int \exp(a(t) + b\mu(t)) \, dt}$$

Spatial model for the surfaces: $a, \mu \sim GP$.
Bayesian extension

- Diggle et al. use an approximate maximum likelihood method.

- Debdeep Pati, David Dunson, and I have been working on a Bayesian version.

- We have shown that an improper prior for b gives a proper posterior under mild assumptions on the prior on σ^2 and the covariance parameters of the GP prior on a and μ.

- We are close to a proof of a strong consistency of the posterior of (a, μ, b) assuming infill asymptotics and under standard regularity conditions.
Jointly modeling the response and the sampling distribution presents computational challenges:

- **Probit link**: conjugate and fast, but requires a grid
- **Logit link**: doesn’t require grid, but not conjugate and requires approximation.

A two-stage approach?

- \[y_i \sim N(\log[\hat{\lambda}(s_i)] + \mu(s_i), \sigma^2), \] where \(\hat{\lambda}(t) \) is an estimate (e.g., kernel density) of the sampling density.

- Our simulations show this often works nearly as well as the fully-Bayesian model. We’re studying the theory.

- Non-linear model: \[y_i \sim N(g[\hat{\lambda}(s_i)] + \mu(s_i), \sigma^2)? \]

- Spatial propensity score: \[y_i \sim N(\mu(s_i), \hat{\lambda}(s_i)\sigma^2)? \]
Other comments

How sensitive are these models to simplifying assumptions?

► These models assume normality, linearity, stationarity, etc.

► Connection with the “feedback problem” in the spatial health group? Several people have observed high sensitivity to model misspecification in joint models of spatially-varying exposures and a health response.

When is it necessary to consider preferential sampling?

► Is it asymptotically (infill) irrelevant?

► How does smoothness of the true process affect the bias?

► Can we include the right covariates and then ignore preferential sampling?

► Spatiotemporal data with fixed measurement locations?