Model selection criteria

- Cross-validation is great for large datasets, but can’t be applied for small datasets.

- Bayes factors are hard to compute for complex models.

- There are several model-selection criteria to fill these gaps.

- We will explore several approaches for choosing between models:
 - LPML
 - DIC
 - WAIC
 - Prediction criteria

- Code is available at
 http://www4.stat.ncsu.edu/~reich/ST740/code/DIC_LMPL_PD.R.
Log pseudo marginal likelihood (LPML)

- LPML is leave-one-out (n-fold) cross-validation with log likelihood as the criteria,

\[LPML = \sum_{i=1}^{n} \log(CPO_i) \quad \text{and} \quad CPO_i = f(y_i | y_{(-i)}). \]

- CPO_i is the conditional predictive ordinate and $y_{(-i)}$ is the data set without y_i.

- We pick the model with largest LPML.

- Gelfand and Day show that you can compute LPML with a single MCMC chain:
Deviance information criteria (DIC)

- Many model selection criteria are based on the deviance $D(y|\theta) = -2 \log[f(y|\theta)]$:

 \[
 AIC = D(y|\hat{\theta}) + 2 \dim(\theta) \\
 BIC = D(y|\hat{\theta}) + \log(n) \dim(\theta)
 \]

 where $\hat{\theta}$ is the MLE.

- The deviance $D(y|\hat{\theta})$ penalizes lack of fit and $\dim(\theta)$ penalizes complexity.

- Smaller values are preferred.

- Problems for Bayesians:
Deviance information criteria (DIC)

- DIC handles these issues. It is
 \[DIC = \bar{D} + p_D. \]

- \(\bar{D} = E_{\theta|y} [D(y|\theta)] \) is the posterior mean of the deviance and penalizes lack of fit.

- \(\hat{D} = D(y|\hat{\theta}) \) is the deviance evaluated at the posterior mean (or median) of \(\theta \).

- \(p_D = \bar{D} - \hat{D} \) is the effective model size and penalizes complexity.

- We choose the model with smallest DIC.

- Where does it come from?
Watanabe-Akaike information criteria (WAIC)

- WAIC is another criteria that is decomposed as terms for fit and complexity.

- Fit is measured by
 \[
 DEV_W = \sum_{i=1}^{n} \log E_{\theta|y} [f(y_i|\theta)].
 \]

- Complexity is measured by
 \[
 p_W = \sum_{i=1}^{n} V_{\theta|y} [\log p(y_i|\theta)].
 \]

- Then WAIC = $DEV_W + p_W$ and small WAIC is preferred.

- Where does it come from?
Posterior predictive model selection

- Laud and Ibrahim propose a class of criteria based on sampling many replicate datasets.
- Let Y^* be a posterior sample data set drawn at the same design points as Y.
- If the model is correct, Y^* should be similar to Y.
- To quantify the difference, define discrepancy measure $d(Y, Y^*)$.
- The final criteria is the posterior mean discrepancy \bar{d}; models with small \bar{d} are preferred.
- Computed in MCMC as:

- Example discrepancy measures: