Bayes’ Theorem

- In Bayesian statistics, we select the prior, \(p(\theta) \), and the likelihood, \(p(y|\theta) \).

- Based on these two pieces of information, we must compute the posterior \(p(\theta|y) \).

- Bayes’ theorem is the mathematical formula to convert the likelihood and prior to the posterior.

- Bayes theorem:

\[
p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}
\]

Therefore the posterior is proportional to the likelihood times the prior.
Derivation Bayes' Theorem

Have class do this

By definition

1. \(p(y|\theta) = \frac{p(y, \theta)}{p(\theta)} \)

2. \(p(\theta|x) = \frac{p(y, \theta)}{p(y)} \)

From 1, \(p(y, \theta) = p(y|\theta)p(\theta) \). Inserting this into 2 gives

\[p(\theta|x) = \frac{p(y|\theta)p(\theta)}{p(y)} \]
Example from probability

A team plays half its games at home, wins 70% of its home games, and 40% of its road games. Give that the team wins a game, what’s the probability it was a home game?

\[Y = \begin{cases} 1 & \text{win} \\ 0 & \text{loss} \end{cases} \quad X = \begin{cases} 1 & \text{home} \\ 0 & \text{away} \end{cases} \]

\(\begin{align*}
(1) & \Rightarrow P(X=0) = P(X=1) = \frac{1}{2} \\
(2) & \Rightarrow p(Y=1 | X=1) = 0.7 \\
(3) & \Rightarrow p(Y=1 | X=0) = 0.3
\end{align*} \)

We want \(p(X=1 | Y=1) \).

By Bayes' rule

\[
p(X=1 | Y=1) = \frac{p(Y=1 | X=1) p(X=1)}{p(Y=1)}
\]

\[
= \frac{0.7 \cdot 0.5}{0.55}
\]

What's the marginal prob of winning?

\[
p(Y=1) = \frac{1}{2} \cdot 0.7 + \frac{1}{2} \cdot 0.4 = 0.55
\]

So

\[
p(X=1 | Y=1) = \frac{0.7 \cdot 0.5}{0.55} = \frac{7}{11}
\]
HIV example

- Let θ be the parameter of interest with

$$\theta = \begin{cases}
0 & \text{patient does not have HIV} \\
1 & \text{patient has HIV.}
\end{cases}$$

- The data is Y, defined as

$$Y = \begin{cases}
0 & \text{test is negative} \\
1 & \text{test is positive.}
\end{cases}$$

- **Likelihood:** Since Y is binary, we use a Bernoulli PMF for the likelihood:

 \begin{align*}
 &\text{If } \theta = 0, \quad Y \sim \text{Bern}(\theta) \\
 &\quad \Pr(Y = 0|\theta = 0) = \theta \quad \Pr(Y = 1|\theta = 0) = 1 - \theta \\
 &\text{If } \theta = 1, \quad Y \sim \text{Bern}(\theta, \lambda) \\
 &\quad \Pr(Y = 0|\theta = 1) = \lambda \quad \Pr(Y = 1|\theta = 1) = 1 - \lambda
 \end{align*}

- We must specify both $\Pr(Y = 1|\theta = 0) = q_0$ and $\Pr(Y = 1|\theta = 1) = q_1$.

- The false positive rate is q_0; the true positive rate is q_1. How might we select q_0 and q_1?

- **Prior:** Since θ is binary, we use a Bernoulli prior with $\Pr(\theta = 1) = p$. The prior PMF is

$$\Pr(\theta = x) = \binom{x}{k} p^k (1-p)^{1-k} = \begin{cases}
p & x = 0 \\
1 - p & x = 1
\end{cases}$$

- p is our guess about the probability the patient has HIV before taking the test. How might we select p?
HIV example

Given the patient tests positive, what is the probability they have HIV?

In math, the question is \(P(\theta = 1 \mid y = 1) \).

Bayes rules say:

\[
P(\theta = 1 \mid y = 1) = \frac{P(y = 1 \mid \theta = 1) P(\theta = 1)}{P(y = 1)}
\]

\[
= \frac{\varepsilon_1 p}{\varepsilon_1 p + \varepsilon_0 (1-p)}
\]

We also know that:

\[
P(\theta = 0 \mid y = 1) = \frac{P(y = 1 \mid \theta = 0) P(\theta = 0)}{P(y = 1)}
\]

\[
= \frac{\varepsilon_0 (1-p)}{\varepsilon_1 p + \varepsilon_0 (1-p)}
\]

Do we need to compute \(P(y = 1) \)? No! We know \(P(\theta = 0 \mid y = 1) + P(\theta = 1 \mid y = 1) = 1 \), so

\[
\frac{\varepsilon_1 p}{P(y = 1)} + \frac{\varepsilon_0 (1-p)}{P(y = 1)} = 1 \implies P(y = 1) = \frac{\varepsilon_1 p + \varepsilon_0 (1-p)}{1}
\]
HIV example

Given the patient tests negative, what is the probability they have HIV?

Following similar steps

\[P(\theta = 1 | y = 0) \]

\[= \frac{\theta (1-\theta_1)}{(1-\theta_1) \theta + (1-\theta_0) (1-\theta)} \]

| θ_0 | θ_1 | θ | Your guess | $P(\theta = 1 | y = 1)$ |
|-----------|-----------|---------|------------|-----------------|
| 0.5 | 0.5 | 0.2 | | |
| 0 | 0.5 | 0.2 | | |
| 0.01 | 0.99 | 0.2 | 0.001 | |
| 0.01 | 0.99 | 0.2 | 0.001 | |
| 0.01 | 1.00 | 0.2 | | |

These probabilities are illustrated online at

http://www4.stat.ncsu.edu/~reich/st590/code/HIV.html