1. Concept Review:
 • Interval estimators

2. Exercises

(a) (Revisit) Let X_1, \ldots, X_n be a random sample from $U(\theta, 1)$
 i. Show that $\frac{X_{(1)}}{1-\theta}$ is a pivot quantity
 ii. Derive a $(1 - \alpha)100\%$ confidence interval for θ by using the pivotal quantity
 iii. Derive a $(1 - \alpha)100\%$ confidence interval for θ by pivoting the CDF of $X_{(1)}$

(b) Let $X_1, \ldots, X_n \overset{iid}{\sim} \text{Beta}(\theta, 1)$
 i. Derive the LRT for test of $H_0 : \theta \leq \theta_0$ versus $H_1 : \theta > \theta_0$
 ii. Invert the LRT in (i.) to construct an one-sided $(1 - \alpha)100\%$ confidence interval for θ.
 iii. Use the fact that X_1^θ is a pivot quantity. Derive the distribution of X_1^θ and construct an one-sided $(1 - \alpha)100\%$ confidence interval for θ. Then comment on these two intervals.

(c) Let X be a single observation from exponential(θ), with mean θ. Show that both of the following methods result in the same interval estimator
 i. Use the fact that $\frac{2X}{\theta}$ is a pivotal quantity and construct an equal-tailed confidence accordingly.
 ii. Construct another equal-tailed confidence interval by pivoting the CDF of X.

3. Open for questions.