Statistics of Credit Risk Management in Financial Derivatives

Peter Bloomfield
Department of Statistics
North Carolina State University

Triangle Econometrics Conference
December 12, 1997
Overview

- derivatives
- credit risk
- risk mitigation
- use of collateral
- intermediation
- capital adequacy
- portfolio management
Derivatives:

“A financial instrument whose value derives from some underlying asset”

Futures, options, etc.

Over-the-counter derivatives contract:

- two-party agreement to exchange cash flows;
- lasts for a specified period of time;
- cash flows determined by future market rates, e.g. interest rates.
Example: Interest rate swap

- ABC Corp agrees to pay to XYZ Bank a fixed interest rate of 7% on a principal amount of $10,000,000 for a term of 5 years.
- XYZ Bank agrees to pay to ABC Corp a “floating” interest rate\(^1\) on the same principal amount for the same term.

1. E.g. LIBOR (London InterBank Offered Rate), currently 5.97% for 6-month deposits, + a spread.
Example: Interest rate swap (contd.)

- “Principal amount” does not change hands.
- Only a net payment is made on any payment date.
Marking to Market

Mark-to-Market value:
- net present value (NPV) of remaining cash flows.

Mark-to-market value changes over time:
- with market rates;
- as deal matures.

E.g. If rates rise, ABC expects to receive net payments from XYZ. ABC is “in the money”.
Credit Risk

Default Risk:

• one party may fail to honor contract;
• standard contract requires prompt settlement of NPV (of this and all other contracts);
• other party is an unsecured creditor, unless security is provided.
How much risk?

Party A loses money if:

• Party B defaults, and
• A is *in the money*, and
• recovery is less than 100%
One-year transition probabilities (%):

<table>
<thead>
<tr>
<th></th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>B</th>
<th>CCC</th>
<th>D</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>88.72</td>
<td>8.14</td>
<td>0.66</td>
<td>0.06</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.29</td>
</tr>
<tr>
<td>AA</td>
<td>0.68</td>
<td>88.31</td>
<td>7.59</td>
<td>0.62</td>
<td>0.06</td>
<td>0.14</td>
<td>0.02</td>
<td>0.00</td>
<td>2.58</td>
</tr>
<tr>
<td>A</td>
<td>0.09</td>
<td>2.19</td>
<td>87.74</td>
<td>5.32</td>
<td>0.71</td>
<td>0.25</td>
<td>0.01</td>
<td>0.06</td>
<td>3.64</td>
</tr>
<tr>
<td>BBB</td>
<td>0.02</td>
<td>0.31</td>
<td>5.61</td>
<td>81.95</td>
<td>5.00</td>
<td>1.10</td>
<td>0.11</td>
<td>0.18</td>
<td>5.72</td>
</tr>
<tr>
<td>BB</td>
<td>0.03</td>
<td>0.13</td>
<td>0.61</td>
<td>7.03</td>
<td>73.27</td>
<td>8.04</td>
<td>0.91</td>
<td>1.06</td>
<td>8.93</td>
</tr>
<tr>
<td>B</td>
<td>0.00</td>
<td>0.10</td>
<td>0.21</td>
<td>0.38</td>
<td>5.66</td>
<td>72.91</td>
<td>3.56</td>
<td>5.20</td>
<td>11.98</td>
</tr>
<tr>
<td>CCC</td>
<td>0.18</td>
<td>0.00</td>
<td>0.18</td>
<td>1.07</td>
<td>1.96</td>
<td>9.27</td>
<td>53.48</td>
<td>19.79</td>
<td>14.08</td>
</tr>
<tr>
<td>D</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>NR</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Cumulative default rates (%, Markov model):

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.08</td>
<td>0.12</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>AA</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td>0.10</td>
<td>0.16</td>
<td>0.23</td>
<td>0.32</td>
<td>0.42</td>
<td>0.53</td>
<td>0.65</td>
</tr>
<tr>
<td>A</td>
<td>0.06</td>
<td>0.14</td>
<td>0.26</td>
<td>0.40</td>
<td>0.56</td>
<td>0.75</td>
<td>0.96</td>
<td>1.18</td>
<td>1.41</td>
<td>1.66</td>
</tr>
<tr>
<td>BBB</td>
<td>0.18</td>
<td>0.46</td>
<td>0.83</td>
<td>1.26</td>
<td>1.74</td>
<td>2.24</td>
<td>2.74</td>
<td>3.25</td>
<td>3.74</td>
<td>4.21</td>
</tr>
<tr>
<td>BB</td>
<td>1.06</td>
<td>2.45</td>
<td>3.95</td>
<td>5.44</td>
<td>6.85</td>
<td>8.14</td>
<td>9.29</td>
<td>10.30</td>
<td>11.19</td>
<td>11.96</td>
</tr>
<tr>
<td>CCC</td>
<td>19.79</td>
<td>30.88</td>
<td>37.26</td>
<td>41.06</td>
<td>43.41</td>
<td>44.93</td>
<td>45.96</td>
<td>46.68</td>
<td>47.21</td>
<td>47.60</td>
</tr>
</tbody>
</table>
Historical multi-year rates (%):
(Generally higher)

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.15</td>
<td>0.24</td>
<td>0.43</td>
<td>0.66</td>
<td>1.05</td>
<td>1.21</td>
<td>1.40</td>
</tr>
<tr>
<td>AA</td>
<td>0.00</td>
<td>0.02</td>
<td>0.12</td>
<td>0.25</td>
<td>0.43</td>
<td>0.66</td>
<td>0.89</td>
<td>1.06</td>
<td>1.17</td>
<td>1.29</td>
</tr>
<tr>
<td>A</td>
<td>0.06</td>
<td>0.16</td>
<td>0.27</td>
<td>0.44</td>
<td>0.67</td>
<td>0.88</td>
<td>1.12</td>
<td>1.42</td>
<td>1.77</td>
<td>2.17</td>
</tr>
<tr>
<td>BBB</td>
<td>0.18</td>
<td>0.44</td>
<td>0.72</td>
<td>1.27</td>
<td>1.78</td>
<td>2.38</td>
<td>2.99</td>
<td>3.52</td>
<td>3.94</td>
<td>4.34</td>
</tr>
<tr>
<td>BB</td>
<td>1.06</td>
<td>3.48</td>
<td>6.12</td>
<td>8.68</td>
<td>10.97</td>
<td>13.24</td>
<td>14.46</td>
<td>15.65</td>
<td>16.81</td>
<td>17.73</td>
</tr>
<tr>
<td>B</td>
<td>5.20</td>
<td>11.00</td>
<td>15.95</td>
<td>19.40</td>
<td>21.88</td>
<td>23.63</td>
<td>25.14</td>
<td>26.57</td>
<td>27.74</td>
<td>29.02</td>
</tr>
<tr>
<td>CCC</td>
<td>19.79</td>
<td>26.92</td>
<td>31.63</td>
<td>35.97</td>
<td>40.15</td>
<td>41.61</td>
<td>42.64</td>
<td>43.07</td>
<td>44.20</td>
<td>45.10</td>
</tr>
</tbody>
</table>
Mitigating Risk: Collateral

Party A is in the money.

Party A requests collateral (cash or Treasury securities) from Party B.

How much?

- Market value of collateral = C;
- B defaults at most d days later;
- Want $P(C + \delta C > NPV + \delta NPV) > 1 - \varepsilon$.
Mitigating Risk: Collateral (contd.)

Must:
- specify \(d \) and \(\varepsilon \);
- find distribution of \(\delta NPV - \delta C = \delta(NPV - C) \)

Typically:
- assume normal distribution
- \(\mu = 0, \sigma = \text{calculated SD of } \delta(NPV - C) \)
- set \(C = NPV + k\sigma, \ k = 2 \text{ or } 3. \)

Often SD of \(\delta(NPV - C) \) is replaced by

\[
\text{SD of } \delta(NPV) + \text{SD of } \delta(C)
\]
Mitigating Risk: Intermediation

Possible Intermediaries:

- third party;
- Credit-enhanced Derivative Product Company ("DPC") wholly owned by Party B.
Credit Enhancement

How does DPC rate higher than B?

- bankruptcy-remote;
- no market risk;
- no credit exposure to B (collateral);
- enough capital to withstand other credit losses.
DPC Structures

Continuation Vehicle:
- survives insolvency of parent;
- Contingent Manager steps in;
- contracts run to maturity.

Termination Vehicle:
- all contracts terminate on insolvency of parent;
- NPV exchanged promptly with all counterparties.
Capital Adequacy

Rating agencies require

\[P(\text{credit losses} > \text{capital}) > 1 - \varepsilon \]

or similar.

Overall credit loss = \(\sum \) Counterparty loss

Counterparty loss = \(\max\{0, \text{NPV}(\tau)\} \)

\(\tau = \text{time of counterparty event} \)
Capital Adequacy

Assumptions:
1. $\text{NPV}(t)$ -
 - depends on market rates at t;
 - not independent across counterparties.
2. τ –
 - need joint distribution;
 - $\tau = \min\{\tau(\text{counterparty}), \tau(\text{sovereign})\}$
 - independence plausible (perhaps conditionally on market conditions).
Capital Adequacy

Computational strategy:

- condition on market path;
- conditional distribution of credit loss depends on distribution of τ’s (and path);
- conditional independence => distribution of sum is convolution;
- get unconditional distribution by averaging over market paths (simulation);
Optimization

Capital and collateral cost money.

Required levels of both depend on portfolio of contracts:
- credit ratings of counterparties;
- sensitivity of NPV’s to market fluctuations.

Portfolio can be managed to control costs.
Summary

Modern quantitative methods play a role in:

- mitigating credit risk, either through use of collateral or through structuring a special purpose intermediary;
- efficiently managing a portfolio of derivatives.