Statistical Issues in Managing the Credit Risk of Derivatives

Peter Bloomfield

Department of Statistics

North Carolina State University

Workshop on Mathematical Finance

Columbia University

October 1996
Overview

• derivatives
• credit risk
• risk mitigation
• use of collateral
• intermediation
• capital adequacy
• portfolio management
Derivatives:

Over-the-counter derivatives contract:

- two-party agreement to exchange cash flows;
- lasts for a specified period of time;
- cash flows determined by future market rates, e.g. interest rates.
Marking to Market

Mark-to-Market value:
• net present value (NPV) of remaining cash flows.

Mark-to-market value changes over time:
• with market rates;
• as deal matures.
Credit Risk

Default Risk:

- one party may fail to honor contract;
- standard contract requires prompt settlement of NPV (of this and all other contracts);
- other party is an unsecured creditor, unless security is provided.
How much risk?

Party A loses money if:

- Party B defaults, and
- NPV to A is positive, and
- recovery is less than 100%
One-year transition probabilities (%):

<table>
<thead>
<tr>
<th></th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>B</th>
<th>CCC</th>
<th>D</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>88.72</td>
<td>8.14</td>
<td>0.66</td>
<td>0.06</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.29</td>
</tr>
<tr>
<td>AA</td>
<td>0.68</td>
<td>88.31</td>
<td>7.59</td>
<td>0.62</td>
<td>0.06</td>
<td>0.14</td>
<td>0.02</td>
<td>0.00</td>
<td>2.58</td>
</tr>
<tr>
<td>A</td>
<td>0.09</td>
<td>2.19</td>
<td>87.74</td>
<td>5.32</td>
<td>0.71</td>
<td>0.25</td>
<td>0.01</td>
<td>0.06</td>
<td>3.64</td>
</tr>
<tr>
<td>BBB</td>
<td>0.02</td>
<td>0.31</td>
<td>5.61</td>
<td>81.95</td>
<td>5.00</td>
<td>1.10</td>
<td>0.11</td>
<td>0.18</td>
<td>5.72</td>
</tr>
<tr>
<td>BB</td>
<td>0.03</td>
<td>0.13</td>
<td>0.61</td>
<td>7.03</td>
<td>73.27</td>
<td>8.04</td>
<td>0.91</td>
<td>1.06</td>
<td>8.93</td>
</tr>
<tr>
<td>B</td>
<td>0.00</td>
<td>0.10</td>
<td>0.21</td>
<td>0.38</td>
<td>5.66</td>
<td>72.91</td>
<td>3.56</td>
<td>5.20</td>
<td>11.98</td>
</tr>
<tr>
<td>CCC</td>
<td>0.18</td>
<td>0.00</td>
<td>0.18</td>
<td>1.07</td>
<td>1.96</td>
<td>9.27</td>
<td>53.48</td>
<td>19.79</td>
<td>14.08</td>
</tr>
<tr>
<td>D</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>NR</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Cumulative default rates (%, Markov model):

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.08</td>
<td>0.12</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>AA</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td>0.10</td>
<td>0.16</td>
<td>0.23</td>
<td>0.32</td>
<td>0.42</td>
<td>0.53</td>
<td>0.65</td>
</tr>
<tr>
<td>A</td>
<td>0.06</td>
<td>0.14</td>
<td>0.26</td>
<td>0.40</td>
<td>0.56</td>
<td>0.75</td>
<td>0.96</td>
<td>1.18</td>
<td>1.41</td>
<td>1.66</td>
</tr>
<tr>
<td>BBB</td>
<td>0.18</td>
<td>0.46</td>
<td>0.83</td>
<td>1.26</td>
<td>1.74</td>
<td>2.24</td>
<td>2.74</td>
<td>3.25</td>
<td>3.74</td>
<td>4.21</td>
</tr>
<tr>
<td>BB</td>
<td>1.06</td>
<td>2.45</td>
<td>3.95</td>
<td>5.44</td>
<td>6.85</td>
<td>8.14</td>
<td>9.29</td>
<td>10.30</td>
<td>11.19</td>
<td>11.96</td>
</tr>
<tr>
<td>CCC</td>
<td>19.79</td>
<td>30.88</td>
<td>37.26</td>
<td>41.06</td>
<td>43.41</td>
<td>44.93</td>
<td>45.96</td>
<td>46.68</td>
<td>47.21</td>
<td>47.60</td>
</tr>
</tbody>
</table>

Historical multi-year rates are higher.
Mitigating Risk: Collateral

Party A’s NPV > 0.

Party A requests collateral (Treasury securities) from Party B.

How much?

- Market value of collateral = C;
- B defaults at most \(d \) days later;
- Want \(P(C + \delta C > NPV + \delta NPV) > 1 - \varepsilon \).

Must:

- specify \(d \) and \(\varepsilon \);
- find distribution of \(\delta NPV - \delta C = \delta(NPV - C) \).
Mitigating Risk: Intermediation

Possible Intermediaries:
- third party;
- Credit-enhanced Derivative Product Company ("DPC") wholly owned by Party B.
Credit Enhancement

How does DPC rate higher than B?

- bankruptcy-remote;
- no market risk;
- no credit exposure to B (collateral);
- enough capital to withstand other credit losses.
DPC Structures

Continuation Vehicle:
- survives insolvency of parent;
- Contingent Manager steps in;
- contracts run to maturity.

Termination Vehicle:
- all contracts terminate on insolvency of parent;
- NPV exchanged promptly with all counterparties.
Capital Adequacy

Rating agencies require

\[P(\text{credit losses} > \text{capital}) > 1 - \varepsilon \]

or similar.

Overall credit loss = \(\sum \) Counterparty loss

Counterparty loss = \(\min\{0, \text{NPV}(\tau)\} \)

\(\tau = \text{time of counterparty event} \)
Capital Adequacy

Assumptions:
1. $\text{NPV}(t)$ -
 - depends on market rates at t;
 - not independent across counterparties.
2. τ -
 - need joint distribution;
 - $\tau = \min\{\tau(\text{counterparty}), \tau(\text{sovereign})\}$
 - independence plausible (perhaps conditionally on market conditions).
Capital Adequacy

Computational strategy:
- condition on market path;
- conditional distribution of credit loss depends on distribution of τ’s (and path);
- conditional independence => distribution of sum is convolution;
- get unconditional distribution by averaging over market paths (simulation);
Optimization

Capital and collateral cost money.

Required levels of both depend on portfolio of contracts:
 • credit ratings of counterparties;
 • sensitivity of NPV’s to market fluctuations.

Portfolio can be managed to control costs.
Summary

Probability modelling and statistical analysis play role in:

- mitigating credit risk, either through use of collateral or through structuring a special purpose intermediary;
- efficiently managing a portfolio of derivatives.