1. Consider an example where z and y denote pretest and posttest mental capacity scores for subjects randomized to one of three treatments.

<table>
<thead>
<tr>
<th>Trt 1</th>
<th>Trt 2</th>
<th>Trt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>24</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>28</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td>38</td>
<td>59</td>
<td>31</td>
</tr>
<tr>
<td>42</td>
<td>60</td>
<td>34</td>
</tr>
<tr>
<td>24</td>
<td>47</td>
<td>18</td>
</tr>
<tr>
<td>39</td>
<td>66</td>
<td>24</td>
</tr>
<tr>
<td>45</td>
<td>76</td>
<td>41</td>
</tr>
<tr>
<td>19</td>
<td>50</td>
<td>34</td>
</tr>
<tr>
<td>22</td>
<td>36</td>
<td>39</td>
</tr>
</tbody>
</table>

$z_1 = 30 \quad \hat{y}_1 = ? \quad \hat{z}_2 = 30.7 \quad \hat{y}_2 = ? \quad \hat{z}_3 = 31.9 \quad \hat{y}_3 = ?$

(a) To read the data in, we'll look at a few of features of the DATA step:

- INFILE statement with FIRSTOBS option
- the single trailing @ sign
- do loops

```
DATA raoeg;
  INFILE "raoeg12.1.dat" FIRSTOBS=4;
  DO trt=1 to 3;
    INPUT z y @;
    OUTPUT;
    *PUT trt z y;
  END;
RUN;
PROC PRINT DATA=raoeg;RUN;
```
Because of the @ statement, the INPUT statement does NOT look to the next line of the datafile for the next values of z and y. Instead, it holds the record until SAS either

- executes an INPUT statement with no trailing @ or
- reaches the bottom of the datastep (after trt = 3 loop finishes in this case)

Now that INPUT z y @; has been executed, OUTPUT; writes the variables to the dataset raoeg. Then the END; statement iterates to trt = 2 and the step inside the DO loop is repeated twice. After the trt = 3 step, SAS exits the DO loop and exits the datastep.

You can always use PUT statements to see what is going on during the datastep iterations and PROC PRINT; to see the finished datasets.

(b) Compute mean pretest scores (z) and post test scores (y) using PROC MEANS;

\[\text{PROC MEANS MEAN STD;} \]
\[\quad \text{CLASS trt;} \]
\[\quad \text{VAR y z;} \]
\[\text{RUN;} \]

Carry out a one-way ANOVA to test whether or not the post-test population means \(\mu_1, \mu_2, \mu_3 \) are plausibly equal in light of these data. That is, are \(\bar{y_i} + 1, \bar{y_i} + 2, \bar{y_i} + 3 \) significantly different? Use the code below.

\[\text{PROC GLM;} \]
\[\quad \text{CLASS trt;} \]
\[\quad \text{MODEL y=trt;} \]
\[\text{RUN;} \]

To see the treatment means, add a MEANS trt; statement after the MODEL statement.
The F-ratio for the test of equality of means should be $F = 6.7$ with a p-value of 0.0043. Find these in the output.

(c) Add the SOLUTION option to the MODEL statement:

```
MODEL y=trt/SOLUTION;
```

This will adopt the default parameterization for treatment effects discussed in class (the antibiotic example.) Note that $\hat{\beta}_0$ is \bar{y}_3.

(d) Note the $MS[E]$ term. What is the estimated standard deviation of posttest scores receiving a given treatment?

(e) Write the residuals from the one-way ANOVA to a variable called “e” in a new dataset called “raoeg2” with an OUTPUT statement:

```
OUTPUT OUT=raoeg2 R=e;
```

(f) Investigate any linear (or other) association between these residuals and the pretest scores z using PROC REG:

```
PROC REG DATA=raoeg2 SIMPLE;
  MODEL e=z;
  PLOT p.*z;
RUN;
```

Note the strong association (see the F-test for the $\beta = 0$ hypothesis.) Note the proportion of variation in the residuals that could be explained using the pretest score z, r^2. Look at the plot and make note of the estimated slope, $\hat{\beta}$. Also, make note of the overall average pretest score \bar{z}. It will subsequently serve as a point of reference for comparing treatment effects.

(g) Using our general linear model framework with two indicator variables x_1 and x_2 for the three treatment groups, fit a model using the following regression function for the mean posttest score:

$$\mu(x_1, x_2, z) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta z$$

You can use PROC GLM; to do this:

```
PROC GLM DATA=raoeg2;
  CLASS trt;
  MODEL y=trt z;
RUN;
```

Estimate the standard deviation for posttest scores for a given treatment and fixed pretest score $z = z_0$. Note the
reduction in $MS[E]$ from the model that did not include z (in part(d)). That is, note the reduction in unexplained error, or the increase in explained “Model” variance.

(h) Add the **SOLUTION** option to the **MODEL** statement:

```plaintext
MODEL y=trt z/SOLUTION;
```

Observe the changes in the estimated coefficients, $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$. These now account for the pretest score. Note $\hat{\beta}$, the estimated slope for the linear dependence of y on z is the same as it was when the residuals e from the one-way ANOVA were regressed on z. (The standard error changes because the degrees of freedom in the regression aren’t quite correct. The standard errors from the full model are correct.)

(i) To obtain a nice plot of the full fitted model, add an **OUTPUT** statement and a **PROC GPLOT**:

```plaintext
PROC GLM DATA=raoeg;
   CLASS trt;
   MODEL y=trt z;
   OUTPUT OUT=raoeg3 P=fitted;
RUN;

PROC GPLOT;
   PLOT fitted*z=trt;
RUN;
```

(j) To compute adjusted means, an **LSMEANS** statement can be used after the **MODEL** statement. Before running this, reason out the proper direction for the inequalities below. The direction in which a mean \bar{y}_{i+1} is adjusted depends on where its covariate mean \bar{z}_i is relative to the reference point \bar{z} and the sign of the estimated partial slope for z, $\hat{\beta}$.

\[
\begin{align*}
\bar{y}_{1,adj} &< \bar{y}_{i+1} \\
\bar{y}_{2,adj} &< \bar{y}_{i+2} \\
\bar{y}_{3,adj} &< \bar{y}_{i+3}
\end{align*}
\]

Use the **STDERR** and **CL** options to report standard errors and confidence intervals for adjusted means:

```plaintext
LSMEANS trt/STDERR CL;
```

Check to see that your assessments of the inequalities were right.