Hi Ratna,

Point-by-point, I include my responses to the referee’s remarks . . .

2 With so many response variables under consideration, the ANOVA tables quickly become voluminous. They’ve been included in a Master’s Thesis which is available online through the NCSU library. We suggest the document, along with the appropriate URL, be given in the references section:

http://www.lib.ncsu.edu/theses/available/etd-04292005-104024/unrestricted/et

3 When multiple columns of means appear in the same table, it is not clear how to rank them. The usual tactic of superscripting the means in such a way that two means with the same letter for a superscript do not differ significantly leads to an overwhelmingly busy table. To provide the reader with an assessment of experimental variability and statistical significance, we have added three rows to the table to indicate the root mean squared error from the ANOVA, R^2 and Tukey’s Honestly Significant Difference for pairwise comparisons among the 18 means in each column that controls the experimentwise error rate at .05.

4 (I’m indifferent on this one. I don’t necessarily disagree with the referee.)

5 The empirical quadratic models are statistically less complex than the full $3 \times 3 \times 2$ factorial effects models in that they involve fewer parameters. The large proportion of variance explained in the analyses suggest that

- for fixed levels of temperature and time, the mean xylan solubilization (misspelling in eqn (5) on p. 21) reduction is well-modelled as a parabolic function of concentration
- for fixed levels of temperature and (time/concentration), the mean lignin reduction reduction is well-modelled as a parabolic function of (concentration/time)