Show ALL your work, along with JUSTIFICATION for the steps you take.

1. (10 points) Suppose $Y_1 \sim Bin(10, .5)$, $Y_2 \sim Bin(10, .2)$, and Y_1, Y_2 are independent. Then $Y_1 + Y_2 \sim ____$. Choose one of the following, and give a reason for your answer:
 A. $Bin(20, .7)$ B. $Bin(10, .7)$ C. $Bin(10, .5)$ D. $Bin(10, .2)$
 E. None of the above

2. (10 points) Suppose $Y \sim N(\mu, \sigma^2)$. Then $\frac{Y - \mu}{\sigma^2} \sim ____$. Choose one of the following, and give a reason for your answer:
 A. $N(\mu, \sigma^2/n)$ B. χ^2 C. χ^2_{n-1} D. $N(\mu^2, 1)$
 E. None of the above

3. (10 points) Suppose $Y_1, Y_2, \ldots, Y_n \overset{iid}{\sim} Exponential(2)$. Then $\sum_{i=1}^n Y_i \sim ____$. Choose one of the following, and give a reason for your answer:
 A. $Exponential(2n)$ B. $Exponential(2)$ C. $Gamma(1, 2)$ D. $Gamma(n, 2)$
 E. None of the above
4. (20 points) Suppose $Y_i \sim \text{Poisson}(\lambda_i)$, $i = 1, 2, \ldots, n$, and Y_1, \ldots, Y_n are independent. Use either the c.d.f., transformation, or m.g.f. technique (that is, do not simply quote a result!) to find the distribution (that is, identify by name and parameters) of $U = \sum_{i=1}^{n} Y_i$.
5. (20 points) Let \(Y \sim Beta(2,1) \). Find the distribution (that is, identify by name and parameters) of \(U = 1 - Y \).
6. (30 points) Suppose $Y_1 \sim Uniform(0, 4)$, $Y_2 \sim Uniform(3, 5)$, and Y_1, Y_2 are independent. Find the joint probability density function of $U_1 = Y_2 - Y_1$ and $U_2 = Y_2$.
Bonus (5 points): Attempt the following only after you are satisfied with all other responses. Partial credit will not be given.

Suppose random variables Y_1, Y_2, Y_3 are mutually independent. Fill in distributions for these random variables so that $Y_1 + Y_2 + Y_3 \sim Gamma(13, 3)$:

$$\begin{align*}
\text{independent} & \quad \left\{
\begin{array}{c}
Y_1 \sim _\
Y_2 \sim _\
Y_3 \sim _
\end{array}
\right.
\end{align*}$$