Show ALL your work, along with JUSTIFICATION for the steps you take.

1. (20 points) Suppose the random variable Y has probability density function (p.d.f.)
 \[f(y) = 0.25 \text{ for } y = 1, 2, 3, 4 \text{ and zero elsewhere.} \]

 (a) Find and graph the cumulative distribution function (c.d.f.) of Y.

 (b) What is the median of the distribution?

 (c) Find the 60th percentile of the distribution.
2. (18 points) A box contains 6 white balls and 4 black balls. Balls are removed from the box without replacement until either a white ball is removed or 3 balls have been drawn. Let Y be the random variable that counts the number of balls removed from the box.

(a) Find the probability density function (p.d.f.) of Y.

(b) Find the expected number of balls removed from the box.
3. (20 points) Suppose the random variable Y has cumulative distribution function (c.d.f)

$$F(y) = \begin{cases}
0 & y < -1 \\
\frac{y+1}{2} & -1 \leq y < 1 \\
1 & 1 \leq y.
\end{cases}$$

Find the following:

(a) $P(-0.5 < Y \leq 0.5)$
(b) $P(Y = 0)$
(c) $P(2 < Y \leq 3)$
(d) the probability density function (p.d.f.) of Y.
4. (22 points) Suppose the number of transactions handled by a bank teller in a day is a random variable Y with moment generating function $m(t) = 5050t^2 + 100t + 1$.

(a) Find the mean and variance of Y.

(b) Find a lower bound for the probability that the teller will handle between 80 and 120 transactions in a day?

(c) Find an upper bound for the probability that the teller will handle more than 130 transactions in a day?
5. (15 points) Let \(f(y) = \frac{k}{3}, \quad -1 < y < 2 \), zero elsewhere, be the probability density function (p.d.f.) of \(Y \). Find

(a) \(k \)

(b) \(P(Y^2 \leq \frac{1}{4}) \)

(c) \(P(|Y| \leq \frac{3}{2}) \).
Bonus (5 points): Attempt this only after you are satisfied with your responses to the other questions. Partial credit will not be given, and FULL justification of the steps of a correct response is required for credit.

Let the random variable Y have a probability density function (p.d.f.) $f(y)$ that is positive at $y = -1, 0, 1$ and is zero elsewhere. If $f(0) = 0.5$, find $E(Y^2)$.