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We consider generalized linear models and study the asymptotic properties of the posterior
distribution where the dimension of the parameter is allowed to grow to infinity with the sample
size, Under certain growth restrictions on the dimension, we show that the posterior distribution
is consistent and admits a normal approximation. This result can be used to construct procedures
with asymptotic Bayesian validity.
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1. Introduction

In many situations that arise in practice, we encounter independent outcomes
X1,...,Xp of a variable of interest where the data (possibly after a suitable trans-
formation) comes from an m-dimensional (standard) exponential family, i.e., x; has
a density (with respect to a o-finite measure on R™)

(1.1) f(xi,6;) =exp[xT6; —(6:)], i=1,...,n,

where the parameters 6y, ... , 8, are determined by a smaller number of parameters
Bi,-..,Bp, p < n. Dempster [3] considers the situation where x; is observed along
with p (real valued) covariates z;, ...,z and 6; has the linear expansion

(1.2) 9;:2;1ﬂ1+-~+2,'pﬂp, i=1,...,n.

Haberman [7] terms the above a Dempster model. One constructs estimates of
6;’s through the estimates of B;’s. Thus the estimate of 8; “borrows strength”
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from all the observations, a situation similar to small area estimation. Logistic
i3, Inc. regression model for binomial probability, Poisson regression model and normal re-
gression model with homoscedastic errors are simple examples of Dempster models.
Dempster models are, however, special cases of Generalized Linear Models (GLMs)
introduced by Nelder and Wedderburn [12] which are defined by the relation

[k

(1.3) 6; =g(z01B1+ -+ 2ipBp), - i=1,...,n,

where the link function g: R™ — R™ is a one-to-one, continuously differentiable
function with a non-zero Jacobian everywhere (i.e., a diffcomorphism). Dempster
models are thus GLMs with the canonical link and enjoy the property of having
sufficient statistics equal in dimension to (8y,...,8p), see McCullagh and Nelder
[11], p. 32. Among the familiar examples satisfying (1.3) are probit regression model
and overdispersed models, see McCullagh and Nelder [11] and Fahrmeir and Tutz
[4] for description of these models and further examples.

When a Bayesian analysis is intended, one looks at the posterior distribution. It
is therefore important to know whether the minimal requirement of posterior con-
sistency holds or not. Further, the posterior distribution is often very complicated
‘terior and it is desirable to have simpler approximations. The aim of the present paper is

to establish consistency and a normal approximation of the posterior distribution

ample
ution in GLMs, where it is also allowed that the dimension p = p,, increases to infinity

dures with the sample size.
When p remains fixed, these results are relatively easy to derive from the general

rodel, results obtained in Ghosal et al. [6] (Proposition 1, Theorem 1 and Example 1).
Normal approximation to the posterior distribution, usually called the Bernstein—
von Mises theorem, is well known in some simpler situations and there have been
T a number of contributors in this area. To name a few, we cite Le Cam [10], Bickel
and Yahav [2], and Johnson [9]. Even if one is reluctant to use asymptotic ap-
mes proximations when the sample size is not very large, the normal approximation
ns- may be used for other purposes such as the approximating density in importance

sampling from the posterior, see, e.g., Tanner [13] (p. 117). Finally, since a first
order approximation is always free from the particular choice of the prior, it may
be thought of as a sort of “non-informative posterior” which may be appealing to
an objective Bayesian, or even a frequentist.

From practical considerations, it is desirable to have limit theorems when p is
ters relatively large, i.e., p — 00 as n — oo, subject to some growth restrictions. The
ong , reason is twofold. Since a data analyst usually uses a relatively more complicated

model (i.e., with a higher dimension) if the sample size is larger, on one hand, limit
theorems with dimension tending to infinity justify the use of various asymptotic
approximations. On the other hand, for a given model, such results give an idea
about the sampk size required for the safe applications of asymptotic theory. How-
- of ever, the situation where the dimension tends to infinity is technically much more
h” ' involved and a very careful consideration of the various error terms is necessary.

The frequentist version of this problem, viz., consistency and asymptotic normal-
L or ity of the maxirmm likelihood estimate (MLE) in Dempster models was solved by
ne. Haberman [7] &s a special case of the treatment of his more general exponential
'2“2“21 ¢ response models. Haberman [7] obtained his results essentially under the growth

{ <
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condition p3/n — 0 (the condition p?/n — 0 suffices for ccasistency). To the best
of our knowledge, similar results for GLMs are not availatle in the literature. In
this paper, we show that the posterior distribution in GLMs admits a normal ap-
proximation, even if the dimension p — co. It is worth mentioning here that the
posterior distribution in a GLM is extremely complicated and can only be com-
puted with the help of highly computationally intensive Mazkov chain Monte-Carlo
methods. This is because of the lack of existence of a conjugate prior and the inap-
plicability of numerical integration in dimension higher than 2. On the other hand,
the normal approximation to the posterior distribution of 8 is easy to compute and
also readily yields an approximation to the posterior distribution of a 8;, which
is sometimes of more direct interest. We assume a little more stringent growth
restriction (p*logp)/n — 0 on p than that assumed in the frequentist counterpart.
Although the growth condition required here is stronger, in ozr view it is not totally
unexpected. The main reason is the presence of a vast tail region which substan-
tially contribute to the posterior probabilities although the likelihood may be very
small in that region. Moreover, we prove our results in terms of a strong distance
measure, viz., the L!-distance and consider the entire parameter simultaneously
while the frequentist counterpart concerns weak convergence of linear functionals
of the MLE. It will, however, be of considerable interest if asymptotic normality
of the posterior distribution of linear functionals can be established under weaker
growth conditions.

Asymptotic normality of posterior distributions with a growing number of pa-
rameters has not been established before in the literature except in the recent work
of the author (Ghosal [5]), where similar results have been proved for linear models.
The two problems are, however, largely non-overlapping with the normal regression
model being the only common example.

In our results, we restrict ourselves to univariate GLMs, ie., m = 1. The gen-
eral case is notationally much more complicated while the univariate case already
includes many models used in practice. However, we believe that the treatment of
the multivariate case.m > 1 is essentially the same. We shall switch to the non-bold
scalar notations and write z1,...,z,, 01,...,60p, B1,..., 5, etc. Moreover, we set
2 = (zi1,...,2ip)T, 8 = (04,...,6,)T and B = (B1,...,B,)T. We shall also make
another simplification. Although we are in a situation involving a triangular array,
the extra suffix denoting the stage will often be suppressed.

The organization of the paper is as follows. In Section 2, we state and prove our
main result (Theorem 2.1) on the asymptotic normality of the posterior distribution.
The proof is somewhat lengthy and for the sake of a better presentation, we split
it into several auxiliary lemmas. Proofs of the lemmas are given in Section 3.
Consistency and other related questions are answered from simple corollaries to
the main theorem and its lemmas. In Section 4, we discuss applications of the
results and check the numerical accuracy of the approximations by means of a

simulation study.

2. Setup and Main Results
Let z;,...,z, be independent observations with z; having a density fi(0) (with

respect to a o-finite measure v) defined by

(2.1) fi(zi) = f(2i;6:) = exp[z:6; — ¥(6,)], i=1,...,n,
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where §; = g(zT 8) and g(-) is the link function. For a given prior 7(-), the posterior
distribution of 3 given the observations zy,... ,z, is defined by

(2.2) 7a(B) < 7(B) [ f(z:;9(zF B)) = n(B) exp [ > {zig(=l B ~v(9(z7 B)) }J-
i=1 i=1

We fix a (sequence of) parameter point(s) By and will agree to the convention
of dropping By in the probability statements. We transform the parameter 3 to

u= B,l,/z(ﬂ — Bo), where B, = 377 ;b”(g(z?'ﬂg))(g'(z?ﬂg)yziz?‘ and BA/? is its
positive definite square root. Then the likelihood ratio, as a function of u, is given

by
(2.3) Zp(u) =exp [z {:c,- (9(zF Bo + z?B':l/Zu) - g(Z,T,Bo))
i=1
~ [¥(o(aT Bo + 27 B /7)) - (g(a ﬁ))]}], u € BY*(©, - Bo).

We set Z,(u) =0ifu ¢ B,‘,”(e,, — Bo). The posterior distribution of u is then
given by :

(8o + Bz /*u) 7, (u)
S (B0 + BV w) Z,(w)dw

(2.4) () =

The following is the main result of this paper.

Theorem 2.1 Under Conditions (A0)~(A3) described below,
(2.5) [ 1730 = 6y 80, 1) du =

where An = 370 (zi — ¥'(9(27 Bo))) ¢'(2T Bo)B %2, ¢p(-; 8, X) stands for the
density of Np(1s,S) and I, is the identity matriz of order p.

To prove Theorem 2.1, we shall assume that the following regularity conditions
(A0)—(A3) hold.

(A0) The link function g(-) is a one-to-one thrice continuously differentiable
function on R. The matrix A, defined by the relation A, = Sy zizl is positive
definite.

(A1) As n varies, max; <i<n fo;| remains bounded, where 6p; stand for z7 By, the
ith component of e true value of §;.

This would seem to be a reasonable hypothesis particularly if the data is cleaned

from extreme outhers.
With the above in mind, we can restrict the parameter space according to our

convenience. The sllowable values of 8 are assumed to satisfy

(2.6) max |z]B| < K (say),

1<i<n
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i.e., the sequence max;<i<yn |0;] is bounded. We denote z2e set of all 3 satisfying
(2.6) by ©,. The actual specification of K is, however, no: necessary for calculating
the normal approximation. To a frequentist, our resuliz apply if the prior has
support in ©,,. To a Bayesian, (2.6) means simply a beli< in (Al).
Set 7, = maxi<i<n |A7 /%] and &, = ”A;”z” wiere Ay '/? (respectively,
Yy %} is the positive definite square root of A;! (respectively, An) and || -|| stands
for the Euclidean norm for vectors and operator norm for matrices.

(A2) The prior density x(-) of B is proper and satisfies
27 _ 7(Bo) > 7 for some 1o >0
and the condition of Lipschitz continuity
(28)  [logn(B) —logn(Bo)| < KallB—Boll, 118 - 5]l < Callogn)/n.

The Lipschitz constant K, = K,(C) will be required to satisfy some growth re-
striction to be described in Assumption (A3) below.

The conditions (2.7) and (2.8) described above are satisfied with K, = Mp!/?
in the common situation where the components of 3 are a priori independently
distributed with the jth component g; following a density =;(:), j =1,...,p, and
for some M,6,m0 >0 and forall j=1,...,p, m;(Boj) > n: and

(2.9) [log m;(B;) — log mj(Boj)l < MIB; — Bojl, 1% — Poil <6,

provided p(log p)'/26, — 0.

(A3) The dimension p can grow to infinity subject to the following constraints:

(2.10) K, 6,p(logp)'/> =0 and p**(logp)*n. — 0,

where K, is as defined in (2.8). Further, the design satisfies

(2.11) tr(An) = znjzz,?j = O(np).

i=1j=1

To explain condition (A3), we remark that a condition on the smallness of 7,
is a uniform asymptotic negligibility condition while smallness of §, is a basic
requirement on the normalizer for any kind of asymptotics. The factors involving
p are redundant in the fixed dimension case, but are crucial for asymptotics in
increasing dimension. The last condition on the trace of A, is a mild requirement.
When z;’s behave like a random sample from a nonsingular distribution on R?, and
K, = O(p'/?), the condition (p*logp)/n — 0 is sufficient to imply (2.10).

We also assume that some power of p grows faster than n, i.e., logp and logn
are of the same order. If this fails, then the situation is very close to the classical
case of fixed dimension. Theorem 2.1 is still valid in this case but a little change in
the proof is required. It can be treated using similar (in fact, simpler) arguments,
but one has to use a different break-up of central and tail regions in (2.25) below.
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For example, the arguments go through if we split into the regions |jul] < n/* and

lal > i/,

Recall our notation B, = E;;l Y (g(z?ﬂo)) (g’(z?ﬂo)) 2z,-z;-T. By the strict con-
vexity of ¢(-), the assumption on the link function g(-) [vide (A0)] and boundedness
of zT By [vide (A1)), it follows that there are Ky > ko > 0 such that

(2.12) koAn < B, £ KgAy;

here A < B means that B — A is nonnegative definite. If we denote “3;1/2“ by &

and max;<i<n ]]B;llzz,-” by n2, then it follows from (2.12) that §, and & are of
the same order. For the same reason 1, and 5}, are also of the same order. Hence

(2.13) Kby p(logp)/* =0, p**(logp)*/?n; —0 and  tr(B,) = O(np).

Also observe that EA, = 0 and E(A,AZ) = I, the identity matrix of order p, ‘

where, as in Theorem 2.1, A, = Y I, (zi — tﬁ’(g(z?ﬂo)))g’(z?ﬂo)B;llzz;. As a
consequence, [|Aal| = Op(p'/?) by Chebyshev’s inequality.

The proof of Theorem 2.1 is a little lengthy. For the sake of a better presen-
tation, we start with a series of technical lemmas; the proofs of the lemmas will
be postponed till Section 3. Lemma 2.1 gives the local expansion of the likelihood
ratio. Lemma 2.2 will be used to estimate the contribution of the central portion
to the L'-distance in (2.5). Contribution of the tail of the actual posterior density
is estimated in Lemma 2.5 using a technique due to Ibragimov and Has’'minskii [8]
(Lemma 1.5.2). Lemmas 2.3 and 2.4 are preparatory lemmas for Lemma 2.5. We
will bound the Integral of the actual posterior over an intermediate region with
the aid of Lemma 2.6. Finally, Lemma 2.7 gives the estimates of the tail of the

approximating normal density.

Lemma 2.1. For any C > 0, we have the following:
(a) With probebility approaching unity, uniformly in |ju]| < Cp(logp)!/?,

(2.14) [log Zn(u) = (u" An = 3{ul)] < Aalu]?
and
(2.15) log Za(u) < uT A, = Lul*(1 - 2),),

where A, = O(p(ogp) /).
(b) With probbility approaching unity, uniformly in |ju|| < C(plogp)'/?,

(2.16) |log Z,(u) ~ (uT An ~ 3Jul?)] < A5l
and
(2.17) log Zn (1) < uT A, ~ -;—[[u“z(l —2a%),

where A, = O((rlog p)"/*ny).
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Let Z,(u) = exp[uTAn — [Jul?/2].
Lemma 2.2. For any C > 0, there erists B’ > 0 suct that for all sufficiently
large n, with any pre-assigned large probability

(2.18) ( / Z,(u) du)—l /” o 20 = 7. (w)|du < B'ph:.

Lemma 2.3. There ezist By,e1 > 0 such that
(2.19)  E|ZY*(w;) - ZY2(uy)]? < Bollur —uafl?,  wy,m € BY3(O, - Bo),

and

(2.20) EZM?(u) < exp[—e1fju)|?], u e BY?(6: - Bo).

Lemma 2.4. For any 0 < § < 1, we have
(2.21) P{ / Zn(w)n(Bo + B/ ?u)du < w(ﬂo)é”/4} < 4B},

where By is the constant oblained tn Lemma 2.3.

Lemma 2.5. For any m > 0, there are constants By,C > 0 such that

(2.22) E(/ W;(u)du) < Byp™™.
[tall>Cp(log p)*/?

Lemma 2.6. For any Ca,c > 0, we can find By, Cy > 0 such that with probability
approaching one,

(2.23) Zn(u)du < Bj exp[—cplogp].

>/C;1 (plogp)*/?<||ulj<Cap(logp)t/?

Lemma 2.7. For any c > 0, there exists C > 0 such that with any pre-assigned
probability, :

(2.24) / ép(u; Ap,I)du < exp[—cp].
{lul|>Cp1/3

We now prove Theorem 2.1. Now onwards, B will stand for a positive generic
constant which need not have the same value in each appearance.
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Proof of Theorem 2.1. Let C > 0 and set F = {u:[juf| < Cp(logp)'/?}. Then

(2.25) / x5 (u) = 6p(1; An, I)| dut

< / Zor(Bo+Bi M) 7(Bo)Zn(u) I du
S JF [ Zo(w)n(Bo + Br M Pw)dw [ 7(B0)Zn(w)dw

+/ w,‘,(u)du+/ ¢p(u;AmIp)du,
Fe Fe

where Zy(u) = exp[uTA, — |lu]|?/2].

By applications of Lemmas 2.5 and 2.7 respectively, the last two terms can be
made as small as desired with probability arbitrarily close to unity by choosing C
sufficiently large. Now the first term on the right hand side (RHS) of (2.25) is at

most

J

Za(w)r(Bo+ B ") _ Za(w)r(Bo+ B )|

[ Za(w)(Bo + Ba'*w)dw [ Za(w)n(Bo)dw
-1
+ ([ Zawraosan) [ [Za)r(Bo+ A7) = Zo (B o

which is further dominated by

(2.26) /F () dut /F 6p(05 An, ) du

#(Bo + Br'/?u)
7(Bo)

+3( [ du)'l [ 1200 - Zugu

Jr Zn(u)du

— 1= =
J Zn(u)du

+ 3sup
F

Observe that

(2.27) ( / Z,,(u)du)—l /F |Z0(w) = Zn (u)| du
< (27r)-P/2/ FZ,,(u)du+/Ec ¢p(u; Ap, L) du

Een
-p/? u) — Zn(u)|du
+(2m)7F /ElZn( ) = Zn(u)] du,

where E = {u: ||u]| < C1(plogp)'/?} and C} is to be chosen shortly.

Lemma 2.5 implies that the first term on the RHS of (2.27) is small while, with
the aid of Lemma 2.7, it follows that the second term is small with probahbility
arbitrarily clzse to one, provided we choose Cy large enough. Since pA;, — 0 (see
(2.13)), it foTows by Lemma 2.2 that the last term on the RHS of (2.27) also goes

to zero in prcbability.

Posterior approrimation for GLM T T T Tazg T T
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It follows from (2.8) that for adequately large n,

7(Bo + Br /)

-1} —=0.
ser| 7(Bo)

(2.28)

Since the last term on the RHS of (2.27) goes to zero, [z Zn(u) du/fz.,(u)du
remains bounded in probability. Hence the expression in (2.26) is small with prob-
ability approaching one and the proof is complete. O

The following is a consequence of Lemma 2.5.

Corollary 2.1 If Conditions (A0), (A1), and (A2) iold, p(logp)'/*n, — 0
and Kn,6, — 0, then for any given § > 0, with probability approaching unily, the
posterior distribution of B concentrates in the §-neighbouriood of Bg. Further, the
assertion holds almost surely if the observations y;’s of different stages share the

same sample space.

Remark 2.1. Arguments similar to those used in Theorem 2.1 imply the fol-
lowing moment convergence:

(220) [l 720) = (35 A, s = 0,

provided (A0), (A1), and (A2) hold and (A3) is strengthened to
Knb6,p*?logp—0 and p(logp)n. — 0.

This, in particular, implies that the posterior mean ,5 of B admits the linearization

(2.30) BY*(B - Bo) = An +0,(1).

Thus (2.30), (A3) and Lindeberg’s central limit theorem together imply that for
any unit vector e, eTB,l,/z(ﬂ — Bo) —a N(0,1).

Theorem 2.1, although important for theoretical reasons, cannot itself be used
for the actual approximation of the posterior (unless one is simulating) since the
approximation involves the unknown value B;. We now obtain a variation of it by
plugging-in a good estimate of By.

Theorem 2.2. Let ,@ be an estimate of B satisfying
(2.31) BY?(B - Bo) = An + 0,(1).

Let T (v) stand for the posterior densily of v = *’1'/2(3 - B), where

B. = " vz B)(g'(z7 B)) 22T

=1

It

is
is

Fi
(2

g e
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Then under (A0)-(A3),
(2.33) | / [Tn(v) = 6p(v;0,L,)|dv —, 0

If, moreover, 3 is the MLE, then (2.31) holds, provided E is consistent in the

sense that

(2.33) | max lzT(ﬂ Bo)| —p

1<i<n

Proof. Since L!-distance is an invariant of a change of variable, by Theorem 2.1,

we obtain

(2.34) [ a6 = (308, Dl = 0,

where p = BY(B7 /%A, - (B - Bo)) and £ = BY?B-1BY2. Thus we have to
show that

(2.35) [1o(vin D) = 4550, )ldv =, 0

It suffices to show that the Kullback-Leibler distance

/ o8 (Zﬁf’%fj,—ﬁ-) $p(v;0,L)dv

1s 0,(1). The twice Kullback-Leibler distance between these two normal densities

18

(2.36) t(C7! L)+ uTS " + log det .
First observe that

T
(2.37) p fmax 12 (B ~ Bo)| —»

Indeed, [[BA'*(B - Bo)ll = Op(p'/?) by (2.31) and the fact that ||A,[| = O, (p1/?).

Hence
127(8 - Bo)| = [z B;Y/2BY2(3 - Bo)] < np?

which implies (2.37) in view of Condition (A3).
As in (2.12), it follows that B, > koA, and so B‘1 < ky'AZ1. Below, let

th = maxi<icn 173 - Bo)|. Using the smoothness of ¢(-) and g(- ), it follows that
for some constant a > 0,

|te(Z7! — L,)[ = {tr((Bn — Bo)(Ba) 1))
< 2ax V'@ B) T B)) — v (] Bo)(o' (] Bo))?| ol B2

Satn Yzl A7z = apt,,
i=1
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which is 0,(1) by (2.37). The second term in (2.36) equals [BY *(B—B0) - An|? =
0p(1) by (2.31). Also —O(ts)Bn < Bn —Ba < O(tn)B,, sc det T= (14 0(t))? =

0,(1) by (2.37). This proves the first assertion.
It remains to prove that under (2.33), the MLE satisfies (2.31). To that end, we

observe that the MLE 5 of B satisfies Y"1 (zi~ gb’(z?ﬁ)}!(z?B)B;l/zz; = 0. Set
(6) = 1(g(8)). Then by Taylor’s expansion, it follows thzt

(2.38) A, = (zig"(27 Bo) — ¢"(2 Bo)) B7 /*2iz] (B - Bo)
i=1

1 = * - -_ a 2
+5 2 (@ig"(a B7) — " (2] B°)) B2 (s (B - £o)
[E3
here B* is an intermediate point. The rest of the proof can be completed using
arguments similar to those used in the proof of Lemma 2.1 (see Section 3). O

Remark 2.2. Condition (2.33) is a consistency requirement for the MLE B
which means that if the sample size is large, all the §;’s can be estimated with
a given precision. The condition holds, if l|Br1./2(ﬁ — Bo)lI* = Op(p®logp) [vide
Condition (A3)]. For the special case of Dempster models, MLE satisfies (2.33) in
view of Haberman’s [7] results. The condition (2.31) means that the estimator 3

has the efficient influence function.

3. Proof of the Lemmas

Throughout this section, we set p(t) = ¥(g(t)).

Proof of Lemma 2.1. The proofs of (a) and (b) are almost identical and so we
prove part (a) only. Let [Juf| < Cp(log p)'/? where C' > 0 is a given constant. Then

by Taylor’s expansion, it follows that

(3.1) log Za(u) = u” A — Sl[ull? + Rin() + Bon(n),
where
(32 Runw)= 5 > lei - ¥/(o(aF By (oF o) aT B u)’,

Il
A

(3.3) Ron(u) = [zig" (z] B7) = ¢"(a] B*))(z] By /*u)?,

(=23 =)
-

i=1

[

and B* is an intermediate point. Thus, using boundedness of the parameter space
(see (2.6)),

(B4 |Ran(w)
< Be(logp)*n; | sup (1o"@)1+ 1" O] inf, (4"60) O]

X Z(II:I + 1)¢"(g(z?ﬂo)) (g'(z?ﬂo))z(z?B;lﬂu)?

=1




3n||2 =
)P =

and, we
= 0. Set
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d using
a

MLE 3
ed with
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= Bp(logp)'/*n;, Y, Euwit" (o(aT Bo)) (g'(aF Bo))* (2T B/ u)?
i=1

+Bp(logp)‘/2 . Z(w' Ew.)¢"(g(zTﬂo))( I(ZTﬁo)) (uTB_I/ZZ,)z

=1

here w; is a short hand for (]x,l +1).
Since the parameter space is bounded, the sequence max;<i<n Ew; is also boun-

ded implying the first term on the RHS of (3.4) is at most Bp(logp)l/zr)‘ [[ull?. We
claim that given any n > 0, there exists a constant B > 0 such that the probability

of the following event is greater than 1 — n: For all u € R?,

—Ew;)tﬁ”(g(z’{ﬂo)) (g’(z?ﬂo))z(uTB;1/2Z.‘)2 < Bp1/2 -“u”2

(3.5)

i=1

To prove that (3.4) holds with large probability, it is enough to look at the unit
vectors. Let ey, ... ,e, stand for the standard basis in R?. From Cauchy-Schwarz

inequality it follows that for any unit vector u,

— Ew)$"(9(27 Bo)) (o' (zF Bo)) (2 B /?u)?

=1
<23 (St — Buw T 0T )

i=lk=1 1=1
x (27 By /%e;)(z] B/ %))’

The proof of the above claim now follows from Chebyshev’s inequality and some
algebraic manipulations. This proves that with high probability, simultaneously for
llu]j < Cp(logp)*/?n;,, we have Ran(u) < Bp(log p)!/2n; (1 + p*/?n;)|[ul]®.

From similar arguments, we can show that with high probability, simultaneously
for |lul] € C(plogp)!/?n, we have Rin(u) < Bp'/?n|lul|®. This completes the
proof of the first part of (a). The second part is a trivial consequence of the first

one. []

Proof of Lemama 2.2. Fix C > 0 and consider the set £ = {u : Jju]] <
C(plogp)!/?}. Thus for large n, with probability close to unity, we have simul-

taneously for allu € F,
|2 (0) = Za(u)| < BA;[[ull* 20 (u) exp[A; f1ull”],

where A}, is as cefined in Lemma 2.1. Thus

3.7 /E 1Zn(w) = Za(u)| du

< B, /E l[ul? exp [uT Ap — (1 - 225 Jull?/2] du
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< BAL(1 - 2) 7 Dexp [[|Aa][(1 - 230) 7 /2]
x [l (1= 200728 P exp [ /2]
< 2B (1= 200) 704 D exp [[|An]7(1 - 23)71/2]
x (p+ (1= 2507 1A, [P) 2.

The result now follows from the facts that fz,(u)du = exp[||An]|?/2](27)?/?,
lAn]l> = Op(p) and pA; — 0. O

Proof of Lemma 2.3. Since any exponential family sztisfies the condition of
differentiability in quadratic mean at any 6, so as 8§ — 6,

a8 [

Thus if z7 B V2yis sufficiently small,

2
v(dz) = o(|8 — 6o[?).

£12(230) = 123 00) = (0 = 00) 55 £2(z00)

(3.9) / 'f‘”(r 9(zF Bo + 2T B; Y/2u)) — f1/3(z; 9(27 Bo))

V(d:L‘)

— 7B u (o e o(aT B0 (5T o)
= o ((o(af Bo + 7 B; /) - o(a7 0))”) = o (e B/ 7u)?).

Let H;(u; B*) stand for the Hellinger distance between the densities f(z;; 27 8"+
z,-TB,:l/zu) and f(z;;27B*), i.e.,

2
(310 B p) = [ |12l 8 + a7 B ) = el 5)] w(d).
Relation (3.9) yields that there exist constants £y and By such that

EO(ZTBn 1/2 )
1+ (z7B7 )2 =

(3.11) < H?(u; 8%) < Bo(zF B7?u)?;

here we have used convexity of (-} and boundedness of the parameter space of 8;’s
to conclude that

2
ltiln>f/’fl/z(x;ﬂ—{-t)—fl/z(:c;b’) dz>0, €>0.

Since by (2.6), z7 B’s are uniformly bounded, the denominator on the left hand side
of (3.11) is bounded above. The rest of the argument is standard, see Ibragimov
and Has’minskii [8] (p. 53-54). O

Proof of Lemma 2.4. The proof is almost identical with that of Lemma L5.1 of
Ibragimov and Has’minskii [8] and hence is omitted. O
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Proof of Lemma 2.5. Except for the fact that the dimension p cannot be absorbed

into the constants, the proof goes along the lines of Lemma I1.5.2 of Ibragimov and

Has’minskii [8]. A formal proof may be found in Ghosal [6] (Lemma 2.5). O

Proof of Lemma 2.6. Fix Ca,c > 0. Note that by (2.15) and the fact that
|An]l = O,(p*/?), we have with high probability,

Zyp(u)du .

(3.12)
Ci{plogp)t/3<||ull<Cap(log p)t/?

< exp [uT An — [Jull2(1 - 221)/2]
Ci(plogp)}/3<{u[|<Cap(log p)*/3

< exp [ = [Jul*(1 - 2Xx)/2]

/;'x(p logp)1/3/2< u[|<Cap(log p)1/?

1
< (2Cp(log p)'/?)" exp [— 15Cip logp]-

The result now follows if we choose C) sufficiently large. O

Proof of Lemma 2.7. As ||A,]] = Op(pl/z), the result is a consequence of the
large deviation estimates associated with the chi-square distribution, see Bahadur
1. O

4. Applications and Ilustration by a Simulation Study

The asymptotic normality of the posterior distribution of 8 may be used to test
approximately whether a particular component of the parameter is zero. Note that
the jth component B; of B is zero if and only if there is no effect of the jth covariate.
Need for such testing arises in the context of model selection, testing whether there
is a variation between different groups, testing the relative effectiveness of one drug
over its competitor (when many other factors are also present) and so on. By
Theorem 2.2, the posterior distribution of B is approximately N, (ﬁ, ﬁ; 1), where
B, = Y0, ¢"(zT B)z:2T and § is a good estimate like the MLE. Marginalizing to
the jth component, we obtain that the posterior distribution of f3; is approximately
N(B;, 097}, where (677)) = B;;1. Hence the approximate region of Highest Posterior
Density having posterior probability content about (1 — @) is the interval (E, -
r,,,,x/&ﬁ, EJ +r,,/2\/c;7), where 74 is the (1 —a)th quantile of the standard normal
variable. Thus the hypothesis §; = 0 may be accepted if this interval contains zero
and rejected otherwise. The procedure is essentially a frequentist test. Qur results
give its asymptotic Bayesian justification even when the number of regressors grows
to infinity.

Sometimes the inference on the more direct parameters 6;’s are of more impor-
tance. The normal approximation to the posterior distribution of 8 readily produces
an approximationa to the posterior distribution of any particular §;, which can be
used to make infe:exz\ce on ;. In fact, the posterior distribution of g~ (6;) is approx-
imately N(Z?B, 57 B;;'z;). By an application of the delta-method, the posterior
distribution of 6; can also be approximated by N(g(zF B), (¢'(zT B;12:))?).

Below, we investigate the numerical accuracy of the normal approximation to the
posterior distributions by means of a simulation study. Although much real data of
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considerable importance are available in the literature (sez, McCullagh and Nelder
[11] and Fahrmeir and Tutz [4]), we prefer to work with sirrulated data to avoid the
effect of any possible model misspecification. We conside the Poisson regression
model: z; ind poisson (pi), 8; = logy; = E}’:l zijBj, i = 1,...,n; here the z;’s
are the covariates and 8 = (f,,..., ) is unknown. Note that when parametrized
in terms 6, the exponential family is standard. We genera:e the z;’s from N(0, 1)
but fix their values once these are obtained. Choosing 3 (the true value of 3) as
the vector having the first 5 components equal to 1 and th= rest equal to 0, we then
generate the z;’s from the above model. We take n = 100 and compare the exact
and approximate posterior for p =5, 10 and 20.

To find out the normal approximation, we first compute the MLE of B by
Newton-Raphson method starting with the initial estimate which is the least square

solution of the system log(l + z;) = ZJ -1 ZijBj, # = 1,...,n. The motivation for
this estimate is as follows: We expect a reasonable estimsze of B if we replace ¢;
by an estimate solely based on z;, in the exact relation lozp; = Zf__.l z;B;. The
estimate (14 ;) is the Bayes estimate of ¢; based on the improper uniform prior on
i and data z;. The obvious estimate z; cannot be used hste since it may vanish.

To compute the exact posterior, we have to rely on Maskov chain Monte-Carlo
methods because numerical integration is inapplicable in high dimension. Since
finding the constants of normalization is the main difficulty, we find that the Me-
tropolis algorithm (see Tanner [13], p. 176) is particularly suitable for our purpose.
The transition probability function is taken as the (centersd) multivariate normal
density with dispersion matrix equal to the inverse of the information matrix at
the MLE. Starting with a randomly selected value, we run the chain and collect
100 values of B with a lag of 100, after discarding the first 5000 outcomes. The
whole procedure is repeated 10 times independently to get 1000 samples from the
posterior distribution of 8. Finally, the posterior density is obtained by the kemel
method of density estimation.

For the purpose of illustration, we display various posterior characteristics of §;
and 0; (which produced the observation z; = 0) in Table 1 and 2, respectively.
For p = 5 and p = 10, we plot the exact and approximate posterior densities of
B1 in Figures 1 and 2 respectively. We thus observe that, as expected, the normal
approximation to the posterior density of j; is pretty accurate for p = 5 while the
quality of the approximation deteriorates as p increases. A similar phenomenon is
observed for the posterior density of 8 also, which is not shown here to save space.
Nevertheless, even with p = 20, the approximation is still moderately accurate.
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TABLE 1. Posterior characteristics of 8

dim. | post.
mean

post.
median

MLE | post. |SD of normal
SD japproximation

p=295 |0.9822
p =10 {0.9546
p =20 {0.9894

0.9848
0.9555

0.9817 [0.0396
0.9493 [0.0589

0.9868

1.0188 {0.0728

0.0468
0.581
0.0712

TABLE 2. Posterior characteristics of 6,

dim. | post. post. MLE | post. [SD of normal
mean | median SD |approximation
p=25 |—-1.4143 |—1.4091 |—1.4142 |0.0859 0.0979
p=10 [—1.2551 |—1.2483 |-1.2294 {0.1529 0.1595
p=120[-1.1604 |~1.1675 [-1.2057 {0.1836 0.1879

FIGURE 1. Exact and approximate posterior density of 8, forp =5
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FiGURE 2. Exact and approximate posterior densiiy of f; for p = 10
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