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SUMMARY

Receiver operating characteristic (ROC) curve is widely applied in measuring discriminatory ability of
diagnostic or prognostic tests. This makes the ROC analysis one of the most active research areas
in medical statistics. Many parametric and semiparametric estimation methods have been proposed for
estimating the ROC curve and its functionals. In this paper, we propose the Bayesian bootstrap (BB), a
fully nonparametric estimation method, for the ROC curve and its functionals, such as the area under
the curve (AUC). The BB method offers a bandwidth-free smoothing approach to the empirical estimate,
and gives credible bounds. The accuracy of the estimate of the ROC curve in the simulation studies is
examined by the integrated absolute error. In comparison with other existing curve estimation methods, the
BB method performs well in terms of accuracy, robustness and simplicity. We also propose a procedure
based on the BB approach to test the binormality assumption. Copyright q 2008 John Wiley & Sons,
Ltd.

KEY WORDS: area under the curve (AUC); Bayesian bootstrap; integrated absolute error; ROC curve;
testing binormality

1. INTRODUCTION

Since its introduction in the context of electronic signal detection [1], receiver operating charac-
teristic (ROC) curve has become the method of choice for quantification of accuracy of medical
diagnostic tests. The diagnostic variables X∼ F for the group without disease and Y ∼G for
those with disease are well defined. The ROC curve is a plot of the true positive fraction
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(TPF) as a function of the false positive fraction (FPF), or sensitivity versus one minus speci-
ficity, and is obtained by varying the threshold criterion distinguishing between a positive and
negative diagnosis. Some features such as the invariance property and interpretation of the area
under the curve (AUC) as Pr(Y>X) make the ROC analysis extremely popular in diagnostics
research.

There is extensive literature for ROC analysis for continuous diagnostic variables based on
independent observations. Semiparametric (SP) methods for ROC analysis have been particu-
larly popular because in addition to specific parametric features, the presence of nonparametric
components make these models considerably flexible. Under the SP framework, there are several
different approaches. The simplest one is the binormal model [1], which assumes normality of
each diagnostic test variable after a common monotonically increasing transformation. The inter-
cept and slope in the binormal model can be estimated by several methods, such as by Hsieh
and Turnbull [2], Metz et al. [3], Zou and Hall [4], Pepe [5, 6], Cai and Moskowitz [7], among
others. However, Goddard and Hinberg [8] provided examples where binormality failed. Simi-
larly, bi-gamma [9] and bi-beta [10] models have also been considered. Li et al. [11] proposed
a model where F and G are specified nonparametrically and parametrically, respectively. Qin
and Zhang [12] modeled the functional form of the likelihood ratio to estimate the parameters.
A normal mixture model was studied by Hall and Zhou [13]. Among completely nonparametric
methods, the kernel estimates of F and G were discussed by Zou et al. [14], Lloyd [15] and
others. Because AUC is an important index for the ROC curve, the estimation method has been
discussed by many including Bamber [16], Brownie et al. [17], DeLong et al. [18] and Qin and
Zhou [19].

Within the nonparametric framework, the empirical estimator of ROC was studied by Hsieh
and Turnbull [2], along with its asymptotic property. Li et al. [20] obtained the weak convergence
theory for the ROC estimator under censoring by plugging-in the product-limit estimators.

The empirical counterpart of the ROC curve is inherently discrete due to the finite choice of the
weights. The discreteness creates conceptual problems in inversion of the estimated ROC curve.
Moreover, since the true ROC curve is generally perceived to be a smooth continuous function, the
discontinuous estimator is unappealing. One option is to smooth the empirical estimator, but the
final estimator depends on the choice of the smoothing parameter. The choice of the smoothing
parameter is a non-trivial issue. In addition, construction of confidence bands based on asymptotic
distribution is complicated. Our motivation is to develop a procedure that can bypass the smoothing
step and easily produce credible bands. Our approach is to generate an ensemble of replica of the
ROC curve and compute relevant quantities based on the ensemble. The average of the ensemble
is used as a point estimator and the variation in the ensemble is used to construct credible regions.
The Bayesian bootstrap (BB) [21] is a resampling procedure, which is similar to the bootstrap but
gives smoother choices of weights. We propose a smoother estimator of the ROC curve and related
credible bands by using the BB method. The BB method closely resembles a non-parametric
Bayesian analysis using the Dirichlet process prior with precision parameters converging to zero,
and makes inference based on the ‘BB posterior distribution’. In other words, because the BB
method corresponds to the posterior of a ‘non-informative’ prior for which the prior base measure
in a Dirichlet process has been chosen to be the null measure, generating samples from the BB
posterior distribution reduces to finite-dimensional random variate generations, i.e. assigning the
Dirichlet distribution to the weights at observations. A more detailed explanation is given in the
following section. We also avoid the problem of inverting the randomly generated survival function,
F̄(x). Another appealing feature of our methodology is that it readily produces standard errors,
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credible intervals and credible bands for associated summary measures such as the AUC and the
partial AUC (pAUC). The BB method is not based on large sample techniques, and in principle
applies to any sample size.

Our simulations show that these bands and intervals have approximate frequentist validity
even for very small sample sizes. This phenomenon has been theoretically explained by strong
approximation theory [22]. In comparison with other existing curve estimation methods, the BB
method performs well in terms of accuracy, robustness, simplicity and smoothness. We also propose
a procedure to test the binormality assumption as an application.

Our methodology is explained in Section 2. A procedure for testing the binormality assumption
is presented in Section 3. Results from simulation studies are displayed in Section 4 and real data
analyses are given in Section 5.

2. METHODOLOGY

The purpose of using the BB method is to produce valid curve estimates as well as credible bands
for any ROC curve.

Let X∼ F and Y ∼G be two independent continuous variables, for instance, two diagnostic
variables coming from two populations, one without disease and one with disease, respectively. By
varying the decision threshold value ct (if X>ct or Y>ct , false or true positive event occurs) and
plotting the TPF (sensitivity) versus the FPF (one minus specificity), the ROC curve is obtained:
{(P(X>ct ), P(Y>ct ))}={(t, R(t))}, where ct ∈R, t= P(X>ct ) is called the FPF. Hence, when
t is given, ct = F̄−1(t)= F−1(1− t), where F−1(�)= inf{x : F(x)��}. Mathematically, we can
express the functional form of ROC curve [6, p. 106] as follows:

R(t)= Ḡ(F̄−1(t))= P(Y>ct )= P(Y>F̄−1(t))= P(F̄(Y )�t) (1)

where F̄(u)= P(X>u) and Ḡ(u)= P(Y>u) are survival functions of X and Y , respectively. A
commonly used index to compare the accuracy of the modalities is given by AUC A and its
estimate Â defined as

A=
∫ 1

0
R(t)dt and Â=

∫ 1

0
R̂(t)dt (2)

where R̂(t) is some estimate of R(t).
The accuracy of estimation for the entire ROC curve can be measured by the integrated absolute

error (IAE) [23]: IAE=∫ 1
0 |R̂(t)−R(t)|dt .

Clearly |Â−A|�IAE. To construct a uniform credible band for ROC, it is advantageous to map
the domain to the real line via a transformation �, such as the logistic transformation (LT) �(x)=
log(x/(1−x)), x∈ (0,1). The maximum possible estimation error in the �-scale is �(�, R, R̂)=
sup{|�(R̂(t))−�(R(t))| : t ∈ (0,1)}. The width of a uniform 100(1−�) per cent credible band for
the transformed ROC, denoted by d�(�, R), is given by

d� =d�(�, R)=100(1−�) per cent percentile of the distribution of �(�, R, R̂) (3)

Thus, the uniform 100(1−�) per cent credible band for the ROC curve can be constructed by

�−1(�(R̂(t))−d�)�R(t)��−1(�(R̂(t))+d�) (4)
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Figure 1. Comparison of empirical and the BB estimate of ROC with the true ROC (simulation data set:
X1, . . . , Xm ∼ i.i.d. N(0,1), Y1, . . . ,Yn ∼ i.i.d. N(1.868,1.52), m=n=10, 5000 BB resamples, grid points

on [0,1] are chosen at equal intervals of length 0.001).

The transformation–retransformation technique automatically ensures that the credible band lies
within the unit square. In practice, d� has to be estimated, usually by some resampling technique.
If the uniform credible band for ROC on t ∈ (0,1) is too wide, other alternatives such as pointwise
100(1−�) per cent credible band or uniform 100(1−�) per cent credible band restricted on a
small subinterval of interest should be considered instead.

As shown below, the motivation of our BB estimator is twofold. On the one hand, we can view
the BB estimator as a bandwidth-free smoothing of the empirical estimate. On the other hand, we
argue that it is a non-informative limit of a Bayesian estimate based on the Dirichlet process prior.
The motivations of our BB estimator are as follows:

1. Empirical ROC estimators [2] are easily obtained by plugging the empirical counterparts in
the expression for the ROC. In order to have a continuous estimator of the ROC curve, the
jumps in the empirical cumulative distribution function (CDF) can be interpolated linearly.
Bootstrap method [24] can be used to get the error of the curve estimate. However, inherent
discreteness of the estimate is partially due to finite choice of the weights. The BB method
proposed below assigns the Dirichlet distribution to the weights. By forming an ensemble of
estimators and averaging, it provides a smoother version of the bootstrap. Figure 1 gives an
illustration of these differences even when the sample size is small.

2. To implement a Bayesian analysis, a natural choice for priors on F and G is Dirichlet
process, denoted as DP, with certain pairs of precision M and center measure �, say F∼
DP(M1,�1), G∼DP(M2,�2). Conditional on the data X1, . . ., Xm and Y1, . . .,Yn , the poste-
rior of (F |data) is DP(M1+m, (M1�1+mFm)/(M1+m)), and that of (R|F , data) is DP(M2+
n, (M2�2◦ F̄−1+nGn ◦ F̄−1)/(M2+n)). Unfortunately, the above informative posterior can
be obtained only by the Sethuraman [25] representation of the Dirichlet process and func-
tion inversion. The Sethuraman representation involves generating an infinite collection of
random variables, which is computationally very intensive. Instead, we consider the non-
informative limit of the Dirichlet processes by letting M1→0 and M2→0. This simplifies
the procedure to an easier computational problem. In fact, we do not even have to specify
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the center measures �1 and �2. We need only to generate from the uniform distribution over
the simplex, which can be done quite easily; see Remark (1). Our BB estimator is based
on this simplification, i.e. the posterior of (F |data) is DP(m,Fm) and (R|F,data) is DP
(n,Gn ◦ F̄−1).

The BB estimator of the ROC curve and its associated summary measures can be computed
as follows: Recall R(t)=Pr(F̄(Y )�t), t ∈D⊂[0,1], where D denotes a prespecified set of
FPF of interest. If we can impute the variable Z = F̄(Y ) by plugging-in the survival function
F̄ of X , generated from the BB resampling distribution given X1, . . .Xn , then the CDF of Z
based on the BB resampling distribution constitutes one realization of the ROC curve from
the corresponding posterior distribution. This argument leads to the following computational
steps:

Step 1 (Imputing the placement variables based on the BB resampling distribution): Let Z j =
F̄#(Y j )=1−F#(Y j), F#(u)=∑m

i=1 pi1(Xi�u), (p1, . . ., pm)∼Dirichlet (m;1, . . .,1) indepen-
dent of others. This is equivalent to generating F̄#∼DP (m,Fm) and evaluating Z j at Y j (Z j
is also called non-disease placement value [6, p. 105] evaluated at Y j ). The difference between
our method and Pepe’s method lies in the fact that we choose the survival function using the BB
resampling distribution instead of the empirical one.

Step 2 (Generating one random realization of the ROC curve): Generate the realiza-
tion of R#

m,n(t), the CDF of Z1, . . ., Zn, where R#
m,n(t)=

∑n
j=1q j1(Z j�t), (q1, . . .,qn)∼

Dirichlet (n;1, . . .,1) independent of others. This is equivalent to generating R#
m,n(t)∼DP (n,Gn ◦

F̄−1) evaluated at t ∈D, where F̄ is generated by Step 1. Let the random realization of AUC
corresponding to R#

m,n be denoted by A#, plus some subscript to indicate the index of the BB
realization.

Step 3 (Averaging the ensemble of random ROC curves): The BB estimate, denoted as R̂BB
m,n(t),

is obtained by averaging the random realizations of the ROC curves, i.e. R̂BB
m,n(t)=mean(R#

m,n(t)),

t ∈D. Similarly, we obtain the BB estimate of AUC denoted as ÂBB by substituting R̂BB
m,n(t)

into (2).
Because of two levels of random variations and averaging over them, the BB estimate is much

smoother than the empirical one. Note that we do not need a kernel to smooth it out.

Remark 1
A convenient method for generating (p1, . . ., pm)∼Dirichlet (m;1, . . .,1) is to generate
w1, . . .,wm ∼ i.i.d. exponential distribution with rate 1 and substitute pi =wi/

∑m
j=1w j , i =

1, . . .,m.

In order to compute error estimates for the BB estimators of the ROC curve and associated
indices, the above steps need to be repeated K times (where K is a reasonably large number). For
example, the BB standard error of ÂBB is given by

s=
√

1

K −1

K∑
l=1

(A#
l − ÂBB)2 (5)

In addition, 100(1−�) per cent BB credible interval for A can be obtained from

the percentiles of {A#
l , l=1, . . .,N} at level � (6)
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To obtain a uniform credible band for R based on BB samples, we may estimate d� by
the 100(1−�) per cent percentile of the sample sup{|�(R(l)(t))−�(R̂(t))| : t∈ (0,1), l=1, . . .,N},
where R(l)(t) and R̂(t) are lth random realization and BB estimate of R(t), respectively, and
substitute d̂� in (4).

Remark 2
Multivariate measurements in the ROC analysis appear fairly common when subjects undergo two
diagnostic tests [26]. Our method immediately extends to the multivariate situation where the ROC
function is estimated componentwise for measurement vectors of both disease and non-disease
groups. One of the easiest solutions is to apply a common set of BB weights to all components
of measurements corresponding to the disease group and similar to the non-disease group. The
rationale behind this assignment is that in this situation, the joint distribution would have been
given a Dirichlet process prior, whose non-informative limit gives the BB resampling scheme using
the same set of weights for each component.

3. APPLICATION TO TESTING BINORMALITY

Because the binormal model is popularly used in practice, it is important to validate the model
assumption before using it. Several methods are available, such as the one based on the linearity
property of TPF and FPF on the ‘normal-deviate axes’, the graphic method mentioned by
Swets [27], a residual plot using bootstrap sampling method proposed by Cai and Moskowitz [7]
and goodness-of-fit tests proposed by Dorfman and Alf [28], Lin and Mudholkar [29], Bozdogan
and Ramirez [30].

Our procedure for testing binormality is motivated as follows. In the binormal model, H(X)∼
Normal(0,1) and H(Y )∼Normal (�,�2), where H(x)=�−1(F(x)) and �>0 by convention;
hereafter, �−1 and � denote the quantile function and CDF of the standard normal distribution,
respectively. By plugging-in a kernel smoothed empirical estimate F̃m of F , we can estimate H(x)
by Ĥ (x)=�−1(F̃m(x)), where F̃m =��m ∗Fm , ‘∗’ stands for the convolution operation and �m
is the bandwidth; see Zou et al. [14], Lloyd [15], Zhou and Harezlak [31], among others, for a
discussion about the choice of the bandwidth. Now � and � can be estimated by the sample mean
and sample standard deviation of Ĥ(Y1), . . ., Ĥ (Yn), which are denoted by �̂ and �̂, respectively.
Under the null hypothesis that the binormal model is true, the ROC function is given by R(t)=
�(a+b�−1(t)), where a=�/�, b=1/�.

Thus, we consider the test statistic T = supt |R̂(t)−�(â+ b̂�−1(t))|, where R̂(t) is the empirical
(or the BB) estimate of R(t), â= �̂/�̂ and b̂=1/�̂. We reject the null hypothesis of binormality for
large value of T , that is, at level � we reject if T�c�. However, it is hard to analytically compute
or approximate the resulting cut-off point c�. We employ a resampling technique, more specifically
the BB, to estimate c�. In view of the strong approximation result of Gu and Ghosal [22], the
sampling distribution of any test statistic �m,n(Fm,Gn) is approximately equal to the BB resampling
distribution of �m,n(F

#
m,G#

n) conditional on the data; here G#(u)=∑n
j=1qi1(Yi�u) and the rest

of the notations are identical to the ones introduced in Section 2. In this case, we may define
T #=�m,n(F

#
m,G#

n)= supt |R#
m,n(t)−�(a#+b#�−1(t))|, where R#

m,n(t) is defined in Section 2, a#

and b# are obtained through �# and �# which in turn are estimated by the sample mean and sample
standard deviation of H#(Y1), . . .,H#(Yn), H#(x)=�−1(F̃#

m(x)) and F̃#
m =��m ∗F#

m . Then c� can
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be estimated by ĉ� =100(1−�) per cent percentile of the BB distribution of T # conditional on the
given samples. Thus, we reject the null hypothesis of binormality if T�ĉ�.

4. SIMULATION STUDIES

In order to compare the performance of the BB estimator with some of the existing alternative
procedures, we conduct simulations under various scenarios:

1. Comparison of curve fitting with some SP estimation methods: By examining the IAEs, we
shall compare the accuracy of the estimates of the ROC curve obtained by the BB method with
the following methods: the kernel density estimator of Zou et al. [14] abbreviated as KZ method;
Lloyd’s kernel CDF estimator [15] abbreviated as LD; parametric method abbreviated as PA, in
which case we assume knowing the diagnostic variables’ parametric forms and the method of
moments is used to estimate the parameters in F and G; BN-G (ROC GLM method by Pepe [5]);
BN-T Box-Cox [4] and SP (SP location-scale models by Pepe [6, p. 112]). Note that BN-G and
BN-T assume a binormal model. The purpose of including the parametric method is to check
whether the loss of efficiency of the BB method is significant when the parametric assumption
holds true. We also compare coverage probabilities and corresponding average lengths of 90
per cent credible intervals for AUC obtained by the BB method with BN-G, BN-T and SP methods.
The AUC estimates proposed by Zou et al. [14] and Lloyd [15] will not be presented in this
simulation. For BN-G, BN-T and SP methods, the bootstrap is used to estimate standard errors or
construct confidence intervals. The distributions of (F,G) used to generate the data are chosen as
lognormal, location-scale exponential, gamma and beta (abbreviated as A, B,C,D, respectively)
for different combinations of the parameters (see Table I). We replicate each simulation 1000 times
and resample 1000 times in each replication.

From the simulation results shown in Table I and Figure 2 (the boxplots of IAE are shown using
the first data set of A, B, C, D, respectively in Table I), we observe that the proposed BB method
performs well with regard to accuracy and robustness. The IAEs obtained by the PA method can
be regarded as the true ones and the IAEs obtained by the BB method and the BN-T method
are comparable with those obtained by the PA method. However, the BN-T method gives lower
coverage probabilities of AUC in some cases (see Table I). The BB method gives the better ROC
curve estimate than the kernel estimates proposed by Zou et al. [14] and Lloyd [15].

2. Comparison with some nonparametric estimation methods: There are several nonparametric
estimation methods available to estimate the AUC. Qin and Zhou [19] conducted extensive simu-
lations to compare the accuracy and efficiency of the estimates using various methods, which are
EL [19], MW (Mann–Whitney two-sample rank statistics), LT (by Pepe [6, p. 107]), standard
percentile bootstrap (PB) and percentile-t bootstrap (PTB). Two out of the three simulation models
used are the same as those used in Qin and Zhou [19]. They are normal with mean and standard
deviation (0,1) and (51/2�−1(AUC),2) for F and G, respectively; exponential with rate 1 for F
and rate (1/AUC−1) for G, where the probability density function of exponential distribution
with rate � is defined by f�(x)=�e−�x . We shall compare the performance of the BB estimator
with these estimators. From simulation results (see Table II), the BB estimator performs well,
especially, the BB intervals tend to be shorter.

Testing binormality assumption: Limited simulation results shown in Table III for testing binor-
mality indicate that the test is consistent, and somewhat too conservative. More investigation will
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Table I. Coverage probabilities of AUC and the corresponding average lengths of the
90 per cent CI shown in parentheses.

Data m=n=15 m=n=50

ux ,�x uy,�y BB BN-G BN-T SP BB BN-G BN-T SP

A
0,1 1,1 0.899 0.886 0.866 0.923 0.893 0.871 0.882 0.900

(0.262) (0.254) (0.250) (0.276) (0.149) (0.141) (0.143) (0.176)
0,1 3,3 0.861 0.859 0.801 0.820 0.886 0.890 0.873 0.150

(0.230) (0.233) (0.205) (0.275) (0.136) (0.134) (0.122) (0.162)

B
0,1 1,1 0.875 0.862 0.860 0.880 0.886 0.888 0.856 0.885

(0.305) (0.288) (0.285) (0.304) (0.172) (0.159) (0.158) (0.167)
0,1 3,3 0.854 0.857 0.910 0.930 0.902 0.772 0.925 0.919

(0.098) (0.097) (0.076) (0.110) (0.057) (0.062) (0.045) (0.065)

C
1,1 2,1 0.886 0.876 0.840 0.873 0.886 0.851 0.860 0.867

(0.244) (0.234) (0.223) (0.244) (0.140) (0.132) (0.133) (0.146)
1,1 5,3 0.852 0.861 0.858 0.882 0.906 0.837 0.886 0.847

(0.101) (0.105) (0.084) (0.108) (0.059) (0.061) (0.051) (0.057)

D
0.15,0.15 0.2,0.3 0.891 0.878 0.867 0.865 0.898 0.892 0.774 0.821

(0.321) (0.323) (0.336) (0.348) (0.182) (0.177) (0.212) (0.184)
0.15,0.15 0.5,0.45 0.896 0.876 0.874 0.834 0.886 0.912 0.796 0.662

(0.333) (0.332) (0.440) (0.341) (0.189) (0.187) (0.266) (0.211)

Our simulation results are based on 1000 simulated data sets and corresponding 1000 BB resamples. Data are
generated by lognormal, location-scale exponential, gamma and beta distributions (abbreviated as A, B,C,D,
respectively) with different combinations of the parameters (A: X and Y data sets are generated from the
lognormal with corresponding normal parameters (ux ,�x ) and (uy ,�y), respectively; B: X’s and Y ’s are
generated from the exponential distribution with rate 0.5 and the location and scale parameters (ux ,�x ) and
(uy,�y), respectively; C: X’s and Y ’s are generated from gamma distribution with mean and standard error
(ux ,�x ) and (uy,�y), respectively; D: X’s and Y ’s are generated from beta distribution with mean and standard
error (ux ,�x ) and (uy ,�y), respectively). The grid points on [0,1] are chosen at equal intervals of length 0.05.

be needed to study its properties, design improvements and compare our test procedure with other
alternatives.

5. REAL DATA ANALYSES

Two examples will be utilized to illustrate how the BB method can be used to construct a credible
band for the ROC curve and a credible interval for the AUC estimate.

1. We will use the data set published by Wieand et al. [32]. This study was based on 51
patients as control group diagnosed as pancreatitis and 90 patients as case group diagnosed
as pancreatic cancer by two biomarkers, which were a cancer antigen (CA 125) and a
carbohydrate antigen (CA 19-9). For the purpose of illustration, we only choose biomarker
CA 19-9. The BB estimates are based on 5000 resamples and grid points at even intervals
of length 0.01 on [0,1]. We only consider a pointwise 90 per cent credible band in this case
(see Figure 3).
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Figure 2. (a) and (b) The boxplots of IAE by the lognormal data sets; (c) and (d) location-scale exponential
data sets; (e) and (f) gamma data sets; and (g) and (h) beta data sets. Left and right sides of the graphs
are shown for m=n=15 and m=n=50, respectively. In each graph unit, boxplots of IAE are simulated
by BB, Zou et al. [14], Llody [15], parametric method, BN-G, BN-T and SP sequentially using the first

data set of A, B, C, D, respectively in Table I.

Our BB estimate (corresponding 95 per cent credible interval) of AUC is 0.8542 which
is similar to those of Qin and Zhang [12] and Wan and Zhang [33], but the corresponding
confidence interval (0.7834, 0.8995) is slightly narrower.

Using the procedure given in Section 3 for testing binormality, we fail to reject the
binormality assumption of biomarker CA 125 and CA 19-9 at an alpha level of 0.05, based
on T =0.1427 and c0.05=0.2943 for CA 125, and T =0.3978 and c0.05=0.5349 for CA
19-9. These results are based on 1000 BB resamples and grid points at even intervals of
length 0.05 on [0,1].
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Table II. Coverage probabilities and corresponding average lengths of 95 per cent CI for AUC (in
parentheses) obtained by BB and other nonparametric methods based on our simulation and the information

contained in Qin and Zhou [19].
Data/AUC BB EL MW LT PB PTB

Normal
0.8 0.9438 0.9407 0.9379 0.9538 0.9300 0.9690

(0.1765) (0.1783) (0.1808) (0.1808) (0.1746) (0.1971)
0.9 0.9315 0.9352 0.9204 0.9468 0.9150 0.9700

(0.1234) (0.1281) (0.1271) (0.1326) (0.1228) (0.1591)
0.95 0.9066 0.8964 0.8818 0.9289 0.8840 0.9490

(0.0823) (0.0874) (0.0850) (0.0930) (0.0814) (0.1360)

Exponential
0.8 0.9465 0.9446 0.9394 0.9551 0.9270 0.9570

(0.1708) (0.1725) (0.1746) (0.1748) (0.1692) (0.1887)
0.9 0.9396 0.9321 0.9200 0.9482 0.9240 0.9740

(0.1212) (0.1254) (0.1247) (0.1290) (0.1198) (0.1501)
0.95 0.9049 0.8977 0.8817 NA 0.9000 0.9460

(0.0823) (0.0881) (0.0859) NA (0.0838) (0.1427)

Our simulation results are based on 10 000 simulated data sets and corresponding 1000 BB resamples. The
grid points on [0,1] are chosen at equal intervals of length 0.005, (m,n)=(50,50).

Table III. Rejection rates for binormality assumption based on BB testing procedure at �=0.05.

Data Rejection rate

(ux ,�x ) (uy ,�y) m=n=15 m=n=50 m=n=100

A (0,1) (1,1) 0 0 0
D (0.15,0.15) (0.2,0.3) 0.191 0.688 0.916

Our simulation results are based on 1000 simulated data sets and corresponding 1000 BB resamples. Data are
generated by lognormal, and beta distributions (abbreviated as A,D, respectively) with parameters (A: X and
Y data sets are generated from the lognormal with corresponding normal parameters (ux ,�x ) and (uy,�y),
respectively; D: X’s and Y ’s are generated from beta distribution with mean and standard error (ux ,�x ) and
(uy,�y), respectively). The grid points on [0,1] are chosen at equal intervals of length 0.05.

2. We also analyze the data sets published by Titomir et al. [34] who proposed a new approach
to detect the left and right ventricular hypertrophies (LVH and RVH). This study was based on
147 subjects with LVH, 60 subjects with RVH and 143 healthy subjects without hypertrophy.
The gold standard test relies on clinical and instrumental data, such as roentgenography and
echocardiography. Some noninvasive electrocardiographic measurements can better distin-
guish the subject from the LVH and RVH by dipole electrocardiotopography. These measure-
ments could be spatiotemporally related to the heart activation process. Titomir et al. [34]
defined the new measurements denoted as ILVH and LRVH for LVH and RVH, respectively,
where ILVH= integral indices of activation duration for the left ventricles (IDLV)∗(maximum
depolarization vector and the QRS interval duration), IRVH= integral indices of activation
duration for the right ventricles (IDRV)∗(module of the vector with components equal to the
waves Rz and Sx of the scalar vectorcardiographic curves). The new measurements ILVH
and IRVH were compared with the sums of wave amplitudes, Rx +Sz and Rz +Sx for LVH
and RVH, respectively.
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Figure 3. Pointwise 90 per cent credible band of the ROC curve using biomarker CA 19-9.
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Figure 4. (a) and (b) BB estimates of ROC curves for diagnostic tests for left and right
ventricular hypertrophies are based on 5000 resamples and grid points at equal intervals of
length 0.01, respectively. Diagnostic tests ILVH and IRVH are plotted in solid lines, tests

Rx +Sz and Rz +Sx are plotted in dotted lines.

Because each patient had more than one diagnostic test, we will apply the BB estimation
method under multivariate setting. The resulting BB estimates of the ROC curves for diag-
nostic measurements ILVH and Rx +Sz for LVH, IRVH and Rz +Sx for RVH are shown in
Figure 4(a) and (b), respectively. We used 5000 BB resamples. The grid points are chosen at
even intervals of length 0.01 on [0,1]. The corresponding BB estimates of pAUC (t ∈[0,0.3])
and AUC for LVH and RVH, along with their differences and 99 per cent credible intervals
are provided in Tables IV and V, respectively. pAUCorAUCis chosen forLVHandRVHbased
on clinical consideration to compare the accuracy of the tests. The ILVH measurement comes
out to be significantly better than Rx +Sz, when t ∈[0,0.3]. Similarly, the IRVH measurement
turns out to be significantly better than Rx +Sz, when t ∈[0,1].

Our results are consistent with those of Titomir et al. [34]. The difference lies in that they
use normal approximation, whereas we use the Bayesian bootstrap technique.
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Table IV. Comparison of diagnostic tests ILVH and Rx +Sz for left ventricular hypertrophy
based on partial AUC (t ∈[0,0.3]).

BB’s pAUC Difference of pAUC

Diagnostic test Estimate Std. dev. Estimate Std. dev. 99 per cent CI

ILVH 0.2233 0.0102 0.0242 0.0096 (0.0019,0.0512)
Rx +Sz 0.1991 0.0123

The BB estimate of pAUC is based on 5000 BB resamples. The grid points on [0,1] are chosen at equal
intervals of length 0.01.

Table V. Comparison of diagnostic tests IRVH and Rz +Sx for right
ventricular hypertrophy based on AUC.

BB’s AUC Difference of AUC

Diagnostic test Estimate Std. dev. Estimate Std. dev. 99 per cent CI

ILVH 0.9175 0.0196 0.0503 0.0132 (0.0239,0.0926)
Rx +Sz 0.8672 0.0297

The BB estimate of AUC is based on 5000 BB resamples. The grid points on [0,1] are chosen at equal
intervals of length 0.01.

APPENDIX: MATLAB CODE

The Matlab code to implement our BB estimate of the ROC curve based on one test is given as
follows:

%Given data: x, m observations from nondisease group
% y, n observations from disease group
% grid, the length of equal intervals of FPF
% rep, resample size

%Define FPF and helper vectors, based on the information given before;
t= [grid:grid:1-grid] % FPF vector
ot=ones(length(t),1) % vector of 1 with the same length as vector t
onx=ones(m,1);ony=ones(n,1)
% vectors of 1 with the same length as x and y, respectively

%AUC function (using Simpson’s method);
function [auc] =auc(roctrue,grid) %input ROC curve vector as roctrue.
auc=1/3*grid*(roctrue(1)+roctrue(length(roctrue))

+2*sum(roctrue(2:(length(roctrue)-1)))
+2*sum(roctrue(2:2:(length(roctrue)-1))))

%%%%%%%%%%%%%%%%%%%BB estimate of ROC, AUC;
for r=1:rep
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% note: to generate Dirichlet weight vectors p and q
p=exprnd(1,1,m);p=p/sum(p);q=exprnd(1,1,n);q=q/sum(q);
z=p*(x*ony’> onx*y’);
roc(r,:) = q*(z’*ot’<ony*t);
aucbb(r) = auc(roc(r,:),grid);
end;
rocbb=mean(roc)% rocbb--BB estimate of ROC
aucbb=auc(rocbb, grid)% BB estimate of AUC

For the multivariate setting, the Matlab code can be obtained easily following Remark (2).
Other sampling error information can be obtained easily.
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