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Motivated by the problems in genomics, astronomy and some other
emerging fields, multiple hypothesis testing has come to the forefront
of statistical research in the recent years. In the context of multiple
testing, new error measures such as the false discovery rate (FDR) oc-
cupy important roles comparable to the role of type I error in classical
hypothesis testing. Assuming that a random mechanism decides the
truth of a hypothesis, substantial gain in power is possible by estimating
error measures from the data. Nonparametric Bayesian approaches are
proven to be particularly suitable for estimation of error measure in mul-
tiple testing situation. A Bayesian approach based on a nonparametric
mixture model for p-values can utilize special features of the distribution
of p-values that significantly improves the quality of estimation. In this
paper we describe the nonparametric Bayesian modeling exercise of the
distribution of the p-values. We begin with a brief review of Bayesian
nonparametric concepts of Dirichlet process and Dirichlet mixtures and
classical multiple hypothesis testing. We then review recently proposed
nonparametric Bayesian methods for estimating errors based on a Dirich-
let mixture of prior for the p-value density. When the test statistics are
independent, a mixture of beta kernels can adequately model the p-value
density, whereas in the dependent case one can consider a Dirichlet mix-
ture of multivariate skew-normal kernel prior for probit transforms of
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the p-values. We conclude the paper by illustrating the scope of these
methods in some real-life applications.

7.1. Bayesian Nonparametric Inference

To make inference given an observed set of data, one needs to model how the
data are generated. The limited knowledge about the mechanism often does
not permit explicit description of the distribution given by a relatively few
parameters. Instead, only very general assumptions leaving a large portion
of the mechanism unspecified can be reasonably made. This nonparamet-
ric approach thus avoids possible gross misspecification of the model, and
understandably is becoming the preferred approach to inference, especially
when many samples can be observed. Nonparametric models are actually
not parameter free, but they contain infinite dimensional parameters, which
can be best interpreted as functions. In common applications, the cumula-
tive distribution function (c.d.f.), density function, nonparametric regres-
sion function, spectral density of a time series, unknown link function in a
generalized linear model, transition density of a Markov chain and so on can
be the unknown function of interest. Classical approach to nonparametric
inference has flourished throughout the last century. Estimation of c.d.f.
is commonly done by the empirical c.d.f., which has attractive asymptotic
properties. Estimation of density, regression function and similar objects in
general needs smoothing through the use of a kernel or through a basis ex-
pansion. Testing problems are generally approached through ranks, which
typically form the maximal invariant class under the action of increasing
transformations.

Bayesian approach to inference offers a conceptually straightforward
and operationally convenient method, since one needs only to compute
the posterior distribution given the observations, on which the inference is
based. In particular, standard errors and confidence sets are automatically
obtained along with a point estimate. In addition, the Bayesian approach
enjoys philosophical justification and often Bayesian estimation methods
have attractive frequentist properties, especially in large samples. However,
Bayesian approach to nonparametric inference is challenged by the issue
of construction of prior distribution on function spaces. Philosophically,
specifying a genuine prior distribution on an infinite dimensional space
amounts to adding infinite amount of prior information about all fine details
of the function of interest. This is somewhat contradictory to the motivation
of nonparametric modeling where one likes to avoid specifying too much
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about the unknown functions. This issue can be resolved by considering the
so called “automatic” or “default” prior distributions, where some tractable
automatic mechanism constructs most part of the prior by spreading the
mass all over the parameter space, while only a handful of key parameters
may be chosen subjectively. Together with additional conditions, large
support of the prior helps the posterior distribution concentrate around the
true value of the unknown function of interest. This property, known as
posterior consistency, validates a Bayesian procedure from the frequentist
view, in that it ensures that, with sufficiently large amount of data, the
truth can be discovered accurately and the data eventually overrides any
prior information. Therefore, a frequentist will be more likely to agree to
the inference based on a default nonparametric prior. Lack of consistency
is thus clearly undesirable since this means that the posterior distribution
is not directed toward the truth. For a consistent posterior, the speed of
convergence to the true value, called the rate of convergence, gives a more
refined picture of the accuracy of a Bayesian procedure in estimating the
unknown function of interest.

For estimating an arbitrary probability measure (equivalently, a c.d.f.)
on the real line, with independent and identically distributed (i.i.d.) obser-
vations from it, Ferguson ([19]) introduced the idea of a Dirichlet process —
a random probability distribution P such that for any finite measurable par-
tition {B1, . . . , Bk} of R, the joint distribution of (P (B1), . . . , P (Bk)) is a fi-
nite dimensional Dirichlet distribution with parameters (α(B1), . . . , α(Bk)),
where α is a finite measure called the base measure of the Dirichlet pro-
cess Dα. Since clearly P (A) ∼ Beta(α(A), α(Ac)), we have E(P (A)) =
α(A)/(α(A) + α(Ac)) = G(A), where G(A) = α(A)/M , a probability mea-
sure called the center measure and M = α(R), called the precision pa-
rameter. This implies that if X |P ∼ P and P ∼ Dα, then marginally
X ∼ G. Observe that var(P (A)) = G(A)G(Ac)/(M + 1), so that the prior
is more tightly concentrated around its mean when M is larger. If P is
given the measure Dα, we shall write P ∼ DP(M,G). The following give
the summary of the most important facts about the Dirichlet process:

(i) If
∫
|ψ|dG <∞, then E(

∫
ψdP ) =

∫
ψdG.

(ii) If X1, . . . , Xn|P iid∼ P and P ∼ Dα, then P |X1, . . . , Xn ∼ Dα+
∑

n
i=1 δXi

.
(iii) E(P |X1, . . . , Xn) = M

M+nG + n
M+nPn, a convex combination of the

prior mean and the empirical distribution Pn.
(iv) Dirichlet sample paths are a.s. discrete distributions.
(v) The topological support of Dα is {P ∗ : supp(P ∗) ⊂ supp(G)}.
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(vi) The marginal joint distribution of (X1, . . . , Xn) from P , where P ∼
Dα, can be described through the conditional laws

Xi|(Xl, l = i) ∼
{
δφj , with probability nj

M+n−1 , j = 1, . . . , k−i,

G, with probability M
M+n−1 ,

where k−i is the number of distinct observations in Xl, l = i and
φ1, . . . , φk−i are those distinct values with multiplicities n1, . . . , nk−i .
Thus the number of distinct observations Kn in X1, . . . , Xn, is gen-
erally much smaller than n with E(Kn) = M

∑n
i=1(M + i − 1)−1 ∼

M log(n/M), introducing sparsity.
(vii) Sethuraman’s ( [51]) stick-breaking representation: P =

∑∞
i=1 Viδθi ,

where θi
iid∼ G, Vi = [

∏i−1
j=1(1 − Yj)]Yi, Yi

iid∼ Beta(1,M). This allows
us to approximately generate a Dirichlet process and is indispensable in
various complicated applications involving the Dirichlet process, where
posterior quantities can be simulated approximately with the help of
a truncation and Markov chain Monte-Carlo (MCMC) techniques.

In view of (iii), clearly G should be elicited as the prior guess about P ,
while M should be regarded as the strength of this belief. Actual specifi-
cation of these are quite difficult in practice, so we usually let G contain
additional hyperparameters ξ, and some flat prior is put on ξ, leading to a
mixture of Dirichlet process ([1]).

A widely different scenario occurs when one mixes parametric families
nonparametrically. Assume that given a latent variable θi, the observa-
tions Xi follows a parametric density ψ(·; θi), i = 1, . . . , n, respectively,
and the random effects θi

iid∼ P , P ∼ Dα ( [20], [33]). In this case, the
density of the observation can be written as fP (x) =

∫
ψ(x; θ)dP (θ). The

induced prior distribution on fP through P ∼ DP(M,G) is called a Dirich-
let process mixture (DPM). Since fP (x) is a linear functional of P , the
expressions of posterior mean and variance of the density fP (x) can be an-
alytically expressed. However, these expressions contain enormously large
number of terms. On the other hand, computable expressions can be ob-
tained by MCMC methods by simulating the latent variables (θ1, . . . , θn)
from their posterior distribution by a scheme very similar to (vi); see [18].
More precisely, given θj , j = i, only Xi affects the posterior distribu-
tion of θi. The observation Xi weighs the selection probability of an old
θj by ψ(Xi; θj), and the fresh draw by M

∫
ψ(Xi; θ)dG(θ), and a fresh

draw, whenever obtained, is taken from the “baseline posterior” defined by
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dGi(θ) ∝ ψ(Xi; θ)dG(θ). The procedure is known as the generalized Polya
urn scheme.

The kernel used in forming DPM can be chosen in different ways de-
pending on the sample space under consideration. A location-scale kernel is
appropriate for densities on the line with unrestricted shape. In Section 7.3,
we shall use a special type of beta kernels for decreasing densities on the
unit interval modeling the density of p-values in multiple hypothesis testing
problem.

To address the issue of consistency, let Π be a prior on the densities and
let f0 stand for the true density. Then the posterior probability of a set B
of densities given observations X1, . . . , Xn can be expressed as

Π(f ∈ B|X1, . . . , Xn) =

∫
B

∏n
i=1

f(Xi)
f0(Xi)

dΠ(f)∫ ∏n
i=1

f(Xi)
f0(Xi)

dΠ(f)
. (7.1)

When B is the complement of a neighborhood U of f0, consistency requires
showing that the expression above goes to 0 as n → ∞ a.s. [Pf0 ]. This
will be addressed by showing that the numerator in (7.1) converges to
zero exponentially fast, while the denominator multiplied by eβn goes to
infinity for all β > 0. The latter happens if Π(f :

∫
f0 log(f0/f) < ε) >

0 for all ε > 0. The assertion about the numerator in (7.1) holds if a
uniformly exponentially consistent test exists for testing the null hypothesis
f = f0 against the alternative f ∈ U c. In particular, the condition holds
automatically if U is a weak neighborhood, which is the only neighborhood
we need to consider in our applications to multiple testing.

7.2. Multiple Hypothesis Testing

Multiple testing procedures are primarily concerned with controlling the
number of incorrect significant results obtained while simultaneously test-
ing a large number of hypothesis. In order to control such errors an ap-
propriate error rate must be defined. Traditionally, the family-wise error
rate (FWER) has been the error rate of choice until recently when the
need was felt to define error rates that more accurately reflect the scientific
goals of modern statistical applications in genomics, proteomics, functional
magnetic resonance imaging (fMRI) and other biomedical problems. In
order to define the FWER and other error rates we must first describe
the different components of a typical multiple testing problem. Suppose
H10, . . . ,Hm0 are m null hypotheses whose validity is being tested simul-
taneously. Suppose m0 of those hypotheses are true and after making
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Table 7.1. Number of hypotheses accepted
and rejected and their true status.

Decision

Hypothesis Accept Reject Total

True U V m0

False T S m − m0

Total Q R m

decisions on each hypothesis, R of the m hypotheses are rejected. Also,
denote the m ordered p-values obtained from testing the m hypotheses as
X(1) < X(2) < · · · < X(m). Table 7.1 describes the components associated
with this scenario.

The FWER is defined as the probability of making at least one false
discovery, i.e. FWER = P (V ≥ 1). The most common FWER controlling
procedure is the Bonferroni procedure where each hypotheses is tested at
level α/m to meet an overall error rate of α; see [35]. When m is large, this
measure is very conservative and may not yield any “statistical discovery”,
a term coined by [54] to describe a rejected hypothesis. Subsequently,
several generalization of the Bonferroni procedure were suggested where
the procedures depend on individual p-values, such as [52], [30], [31], [29]
and [42]. In the context of global testing where one is interested in the
significance of a set of hypotheses as a whole, [52] introduced a particular
sequence of critical values, αi = iα/n, to compare with each p-value. More
recently, researchers proposed generalization of the FWER (such as the
k-FWER) that is more suitable for modern applications; see [32].

While the FWER gives a very conservative error rate, at the other
extreme of the spectrum of error rates is the per comparison error rate
(PCER) where significance of any hypothesis is decided without any regard
to the significance of the rest of the hypothesis. This is equivalent to testing
each hypothesis at a fixed level α and looking at the average error over the
m tests conducted, i.e. PCER = E(V/m). While the PCER is advocated
by some ([53]) it is too liberal and may result in several false discoveries. A
compromise was proposed by [7] where they described a sequential proce-
dure to control the false discovery rate (FDR), defined as FDR = E(V/R).
The ratio V/R is defined to be zero if there are no rejections. The FDR as
an error rate has many desirable properties. First of all, as described in [7]
and by many others, one can devise algorithms to control FDR in multiple
testing situation under fairly general joint behavior of the test statistics
for the hypotheses. Secondly, if all hypotheses are true, controlling FDR
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is equivalent to controlling the FWER. In general, FDR falls between the
other two error rates, the FWER and PCER (cf. [24]).

The Benjamini-Hochberg (B-H) FDR control procedure is a sequential
step-up procedure where the p-values (starting with the largest p-value)
are sequentially compared with a sequence of critical values to find a criti-
cal p-value such that all hypotheses with p-values smaller than the critical
value are rejected. Suppose k̂ = max{i : X(i) ≤ αi} where αi = iα/m.
The the B-H procedure rejects all hypotheses with p-values less than or
equal to X(k̂). If no such k̂ exists, then none of the hypotheses is rejected.
Even though the algorithm sequentially steps down through the sequence
of p-values, it is called a step-up procedure because this is equivalent to
stepping up with respect to the associated sequence of test statistics to
find a minimal significant test value. The procedure is also called a lin-
ear step-up procedure due to the linearity of the critical function αi with
respect to i. [9], [46], [59] among others have shown the FDR associated
with this particular step-up procedure is exactly equal to m0α/m in the
case when the test statistics are independent and is less than m0α/m if
the test statistics have positive dependence: for every test function φ, the
conditional expectation E[φ(X1, . . . , Xm)|Xi] is increasing with Xi for each
i. [46] has suggested an analogous step-down procedure where one fails
to reject all hypotheses with p-values above a critical value αi, that is, if
l̂ = min{i : X(i) > αi}, none of the hypotheses associated with p-value X(l̂)

and above is rejected. [46] used the same set of critical values αi = iα/m as
in [7] which also controls the FDR at the desired level (see [47]). However,
for the step-down procedure even in the independent case the actual FDR
may be less than m0α/m.

Since in the independent case the FDR of the linear step-up procedure
is exactly equal to m0α/m, if the proportion of true null hypotheses, π =
m0/m, is known then α can be adjusted to get FDR equal to any target
level. Specifically, if αi = iα/(mπ) then the FDR of the linear step-up
procedure is exactly equal to α in the independent case. Unfortunately, in
any realistic situation m0 is not known. Thus, in situations where π is not
very close to one, FDR can be significantly smaller than the desired level,
and the procedure may be very conservative with poor power properties.

Another set of sequential FDR controlling procedures were introduced
more recently, where π is adaptively estimated from the data and the critical
values are modified as αi = iα/(mπ̂). Heuristically, this procedure would
yield an FDR close to παE(π̂−1), and if π̂ is an efficient estimator of π
then the FDR for the adaptive procedure will be close to the target level
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α. However, merely plugging-in an estimator of π in the expression for αi
may yield poor results due to the variability of the estimator of π−1. [57]
suggested using π̂ = [m−R(λ)+1]/[m(1−λ)], where R(λ) =

∑
1l{Xi ≤ λ}

is the number of p-values smaller than λ and 0 < λ < 1 is a constant; here
and below 1l will stand for the indicator function. Similar estimators had
been originally suggested by [56]. Then for any λ, choose the sequence of
critical points as

αi = min
{
λ,

iα(1− λ)
m−R(λ) + 1

}
.

The adaptive procedure generally yields tighter FDR control and hence can
enhance the power properties of the procedures significantly ([8], [12]). Of
course, the performance of the procedure will be a function of the choice of
λ. [58] suggested various procedures for choosing λ. [11] suggested choosing
λ = α/(1+α) and they looked at the power properties of the adaptive pro-
cedure. [50] investigated theoretical properties of these two stage procedures
and [22] suggested analogous adaptive step-down procedures.

The procedures described above for controlling FDR can be thought of
as fixed-error rate approach where the individual hypotheses are tested at
different significance level to maintain a constant overall error rate. [57, 58]
introduced the fixed-rejection-region approach where αi = α for all i (i.e.
the rejection region is fixed). The FDR given the rejection region is esti-
mated from the data and then α is chosen to set the estimated FDR at
a predetermined level. [57] also argued that since one becomes concerned
about false discoveries only in the situation where there are some discover-
ies, one should look at the expected proportion of false discoveries condi-
tional on the fact that there has been some discoveries. Thus the positive
false discovery rate (pFDR) is defined as pFDR = E(V/R|R > 0). [57]
showed that if we assume a mixture model for the hypotheses, i.e., if we
can assume that the true null hypothesis are arising as a Bernoulli sequence
with probability π, then the expression for pFDR reduces to

pFDR(α) =
πα

F (α)
(7.2)

where F (·) is the marginal c.d.f. of the p-values. Although it cannot be
controlled in the situation when there are no discoveries, given its simple
expression, pFDR is ideally suited for the estimation approach. Once an
estimator for pFDR has been obtained, the error control procedure reduces
to rejecting all p-values less than or equal to γ̂ where

γ̂ = max{γ : p̂FDR(γ) ≤ α}. (7.3)
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Storey (cf. [57]) showed that the B-H linear step-up procedure can be viewed
as Storey’s procedure where π is estimated by 1. Therefore, it is clear that
using the procedure (7.3) will improve the power substantially unless π is
actually very close to 1.

Storey (cf. [58]) also showed that the pFDR can be given a Bayesian
interpretation as the posterior probability of a null hypothesis being true
given that it has been rejected. This interpretation connects the frequen-
tist and the Bayesian paradigms in the multiple testing situation. Given
that p-values are fundamental quantities that can be interpreted in both
paradigms, this connection in the context of a procedure based on p-values
is illuminating. Several multiple testing procedures have resulted by sub-
stituting different estimators of pFDR in (7.3). Most of these procedures
rely on the expression (7.2) and substitute the empirical c.d.f. for F (α) in
the denominator. These procedures mainly differ in the way they estimate
π. However, since πα is less than or equal to F (α), there is always a risk of
violating the inequality if one estimates F (α) and π independently. [60] sug-
gested a nonparametric Bayesian approach that simultaneously estimates
π and F (α) within a mixture model framework that naturally constrain
the estimators to maintain the relationship. This results in a more efficient
estimator of pFDR.

The case when the test statistics (equivalently, p-values) are dependent
is of course of great practical interest. A procedure that controls the FDR
under positive regression dependence was suggested in [9] where the B-H
critical values are replaced by αi = iα

m
∑ i

j=1 j
−1 . The procedure is very con-

servative because the critical values are significantly smaller than the B-H
critical values. [50] suggested an alternative set of critical values and in-
vestigated the performance under some special dependence structures. [21]
and [17] suggested modeling the probit transform of the p-values as joint
normal distribution to capture dependence among the p-values. A simi-
lar procedure to model the joint behavior of the p-values was suggested
by [44] who used a mixture of skew-normal densities to incorporate depen-
dence among the p-values. This mixing distribution is then estimated using
nonparametric Bayesian techniques described in Section 7.1.

Other error measure such as the local FDR ([17]) were introduced to
suit modern large dimensional datasets. While the FDR depends on the
tail probability of the marginal p-value distribution, F (α), the local FDR
depends on the marginal p-value density. Other forms of generalization
can be found in ( [48], [49]) and the references therein. Almost all error
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measures are functionals of the marginal p-value distribution, while few
have been analyzed under the possibility of dependence among the p-values.
A model based approach that estimates the components of the marginal
distribution of the p-values has the advantage that once accurate estimates
of the components of the marginal distribution are obtained, then it is
possible to estimate several of these error measures and make a comparative
study. Bayesian methodologies in multiple testing were discussed in [13],
[60], [27] and [44]. [26] used a weighted p-value scheme that incorporates
prior information about the hypothesis in the FDR controlling procedure.
Empirical Bayes estimation of FDR was discussed in [15].

A particularly attractive feature of the Bayesian approach in the mul-
tiple testing situation is its ability to attach a posterior probability to an
individual null hypothesis being actually false. In particular, it is easy to
predict the false discovery proportion (FDP), V/R. Let Ii(α) = 1l{Xi < α}
denote that the ith hypothesis is rejected at a threshold level α and let
Hi be the indicator that the ith alternative hypothesis is true. The FDP
process evaluated at a threshold α (cf. [25]) is defined by

FDP(α) =
∑m

i=1 Ii(α)(1 −Hi)∑m
i=1 Ii(α) +

∏m
i=1(1 − Ii(α))

.

Assuming that (Hi, Ii(α)), i = 1, . . . ,m, are exchangeable, [44] showed that
FDR(α) = πb(α)P(at least one rejection), where b(α) is the expected value
of a function of the indicator functions. This implies that pFDR(α) =
πb(α), which reduces to the old expression under independence. A similar
expression was derived in [9] and also in [47]. In particular, [47] showed
that the quantity b(α)/α is the expectation of a jackknife estimator of
E[(1 +R)−1].

Thus the simple formula for pFDR as πα/F (α) does not hold if the
p-values are dependent, but the FDP with better conditional properties,
seems to be more relevant to a Bayesian. Estimating the pFDR will gen-
erally involve computing high dimensional integrals, and hence will be dif-
ficult to obtain in reasonable time, but predicting the FDP is considerably
simpler. Since the Bayesian methods are able to generate from the joint
conditional distribution of (H1, . . . , Hm) given data, we can predict the
FDP by calculating its conditional expectation given data.

The theoretical model for the null distribution of the p-values is
U[0, 1]. The theoretical null model may not be appropriate for the ob-
served p-values in many real-life applications due to composite null hy-
pothesis, complicated test statistic or dependence among the datasets used
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to test the multiple hypothesis. For a single hypothesis, the uniform null
model may be approximately valid even for very complex hypothesis test-
ing situations with composite null and complicated test statistics; see [4].
However, as argued by [16] and [6], if the multiple hypotheses tests are de-
pendent then the m0 null p-values collectively can behave very differently
from a collection of independent uniform random variables. For example,
the histogram of the probit transformed null p-values may be significantly
skinnier than the standard normal, the theoretical null distribution of the
probit p-values. [16] showed that a small difference between the theoretical
null and an empirical null can have a significant impact on the conclusions
of an error control procedure. Fortunately, large scale multiple testing sit-
uations provide one with the opportunity to empirically estimate the null
distribution using a mixture model framework. Thus, validity of the the-
oretical null assumption can be tested from the data and if the observed
values show significant departure from the assumed model, then the error
control procedure may be built based on the empirical null distribution.

7.3. Bayesian Mixture Models for p-Values

As discussed in the previous section, p-values play an extremely impor-
tant role in controlling the error in a multiple hypothesis testing problem.
Therefore, it is a prudent strategy to base our Bayesian approach consid-
ering p-values as fundamental objects rather than as a product of some
classical testing procedure. Consider the estimation approach of Storey
( [57, 58]) discussed in the previous section. Here the false indicator Hi

of the ith null hypothesis, is assumed to arise through a random mech-
anism, being distributed as independent Bernoulli variables with success
probability 1−π. Under this scenario, even though the original problem of
multiple testing belongs to the frequentist paradigm, the probabilities that
one would like to estimate are naturally interpretable in a Bayesian frame-
work. In particular, the pFDR function can be written in the form of a
posterior probability. There are other advantages of the Bayesian approach
too. Storey’s estimation method of π is based on the implicit assumption
that the the density of p-values h under the alternative is concentrated near
zero, and hence almost every p-value over the chosen threshold λ must arise
from null hypotheses. Strictly speaking, this is incorrect because p-values
bigger than λ can occur under alternatives as well. This bias can be ad-
dressed through elaborate modeling of the p-value density. Further, it is
unnatural to assume that the value of the alternative distribution remains
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fixed when the hypotheses themselves are appearing randomly. It is more
natural to assume that, given that the alternative is true, the value of the
parameter under study is chosen randomly according to some distribution.
This additional level of hierarchy is easily absorbed in the mixture model
for the density of p-values proposed below.

7.3.1. Independent case: Beta mixture model for p-values

In this subsection, we assume that the test statistics, and hence the p-
values, arising from different hypotheses are independent. Then the p-
values X1, . . . , Xm may be viewed as i.i.d. samples from the two component
mixture model: f(x) = πg(x)+ (1− π)h(x), where g stands for the density
of p-values under the null hypothesis and h that under the alternative.
The distribution of Xi under the corresponding null hypothesis H0,i may
be assumed to be uniformly distributed on [0, 1], at least approximately.
This happens under a number of scenarios:

(i) the test statistic is a continuous random variable and the null hypoth-
esis is simple;

(ii) in situations like t-test or F -test, where the null hypothesis has been
reduced to a simple one by considerations of similarity or invariance;

(iii) if a conditional predictive p-value or a partial predictive p-value ([4],
[41]) is used.

Thus, unless explicitly stated, hereafter we assume that g is the uniform
density. It is possible that this assumption fails to hold, which will be
evident from the departure of the empirical null distribution from the the-
oretical null. However, even when this assumption fails to hold, generally
the actual g is stochastically larger than the uniform. Therefore it can be
argued that the error control procedures that assume the uniform density
remain valid in the conservative sense. Alternatively, this difference can be
incorporated in the mixture model by allowing the components of the mix-
ture distribution that are stochastically larger than the uniform distribution
to constitute the actual null distribution.

The density of p-values under alternatives is not only concentrated near
zero, but usually has more features. In most multiple testing problems,
individual tests are usually simple one-sided or two-sided z-test, χ2-test, or
more generally, tests for parameters in a monotone likelihood ratio (MLR)
family. When the test is one-sided and the test statistic has the MLR prop-
erty, it is easy to see that the density of p-values is decreasing (Proposition 1
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of [27]). For two-sided alternatives, the null distribution of the test statistic
is often symmetric, and in that case, a two-sided analog of the MLR prop-
erty implies that the p-value density is decreasing (Proposition 2 of [27]).
The p-value density for a one-sided hypothesis generally decays to zero as
x tends to 1. For a two-sided hypothesis, the minimum value of the p-value
density will be a (small) positive number. For instance, for the two-sided
normal location model, the minimum value is e−nθ

2/2, where n is the sample
size on which the test is based on. In either case, the p-value density looks
like a reflected “J”, a shape exhibited by a beta density with parameters
a < 1 and b ≥ 1. In fact, if we are testing for the scale parameter of the
exponential distribution, it is easy to see that the p-value density is exactly
beta with a < 1 and b = 1. In general, several distributions on [0, 1] can be
well approximated by mixtures of beta distributions (see [14], [40]). Thus it
is reasonable to approximate the p-value density under the alternative by an
arbitrary mixture of beta densities with parameters a < 1 and b ≥ 1, that
is, h(x) =

∫
be(x|a, b)dG(a, b), where be(x; a, b) = xa−1(1−x)b−1/B(a, b) is

the beta density with parameters a and b, andB(a, b) = Γ(a)Γ(b)/Γ(a+b) is
the beta function. The mixing distribution can be regarded as a completely
arbitrary distribution subject to the only restriction that G is concentrated
in (0, 1)× [1,∞). [60] took this approach and considered a Dirichlet process
prior on the mixing distribution G. Note that, if the alternative values
arise randomly from a population distribution and individual p-value den-
sities conditional on the alternative are well approximated by mixtures of
beta densities, then the beta mixture model continues to approximate the
overall p-value density. Thus, the mixture model approach covers much
wider models and has a distinct advantage over other methods proposed in
the literature. The resulting posterior can be computed by an appropriate
MCMC method, as described below. The resulting Bayesian estimator, be-
cause of shrinkage properties, offers a reduction in the mean squared error
and is generally more stable than its empirical counterpart considered by
Storey ([57, 58]). [60] ran extensive simulation to demonstrate the advan-
tages of the Bayesian estimator.

The DPM model is equivalent to the following hierarchical model, where
associated with each Xi there is a latent variable θi = (ai, bi),

Xi|θi ∼ π + (1− π) be(xi|θi), θ1, . . . , θm|G iid∼ G and G ∼ DP(M,G0).

The random measure G can be integrated out from the prior distribution
to work with only finitely many latent variables θ1, . . . , θm.
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In application to beta mixtures, it is not possible to choose G0 to be
conjugate with the beta likelihood. Therefore it is not possible to obtain
closed-form expressions for the weights and the baseline posterior distribu-
tion in the generalized Polya urn scheme for sampling from the posterior
distribution of (θ1, . . . , θn). To overcome this difficulty, the no-gaps algo-
rithm ([34]) may be used, which can bypass the problems of evaluating the
weights and sampling from the baseline posterior. For other alternative
MCMC schemes, consult [36].

[60] gave detailed description of how the no-gaps algorithm can be im-
plemented to generate samples from the posterior of (θ1, . . . , θm, π). Once
MCMC sample values of (θ1, . . . , θm, π) are obtained, the posterior mean
is approximately given by the mean of the sample π-values. Since the
pFDR functional is not linear in (G, π), evaluation of the posterior mean
of pFDR(α) requires generating posterior samples of the infinite dimen-
sional parameter h using Sethuraman’s representation of G. This is not
only cumbersome, but also requires truncating the infinite series to finitely
many terms and controlling the error resulting from the truncation. We
avoid this path by observing that, when m is large (which is typical in mul-
tiple testing applications), the “posterior distribution” ofG given θ1, . . . , θm
is essentially concentrated at the “posterior mean” of G given θ1, . . . , θm,
which is given by E(G|θ1, . . . , θm) = (M+m)−1MG0+(M+m)−1

∑m
i=1 δθi ,

where δθ(x) = 1l{θ ≤ x} now stands for the c.d.f. of the distribution
degenerate at θ. Thus the approximate posterior mean of pFDR(α) can
be obtained by the averaging the values of πα/[(M + m)−1MG0(α) +
(M + m)−1

∑m
i=1 δθi(α)] realized in the MCMC samples. In the simula-

tions of [60], it turned out that the sensitivity of the posterior to prior
parameters is minimal.

In spite of the success of the no gaps algorithm in computing the Bayes
estimators of π and pFDR(α), the computing time is exorbitantly high in
large scale applications. In many applications, real-time computing giving
instantaneous results is essential. Newton’s algorithm ([38], [39], [37]) is
a computationally fast way of solving general deconvolution problems in
mixture models, but it can also be used to compute density estimates.

For a general kernel mixture, Newton’s algorithm may be described as
follows: Assume that Y1, . . . , Ym

iid∼ h(y) =
∫
k(y; θ)ψ(θ)dν(θ), where the

mixture density ψ(θ) with respect to the dominating measure ν(θ) is to be
estimated. Start with an initial estimate ψ0(θ), such as the prior mean, of
ψ(θ). Fix weights 1 ≥ w1 ≥ w2 ≥ · · ·wm > 0 such as wi = i−1. Recursively
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compute

ψi(θ) = (1− wi)ψi−1(θ) + wi
k(Yi; θ)ψi−1(θ)∫
k(Yi; t)ψi−1(t)dν(t)

, i = 2, . . . ,m,

and declare ψm(θ) as the final estimate ψ̂(θ). The estimate is not a Bayes
estimate (it depends on the ordering of the observations), but it closely
mimics the Bayes estimate with respect to a DPM prior with kernel k(x; θ)
and center measure with density ψ0(θ). If

∑∞
i=1 wi = ∞ and

∑∞
i=1 w

2
i <∞

then the mixing density is consistently estimated ([37], [28]).
In the multiple testing context, ν is the sum of point mass at 0 of

size 1 and the Lebesgue measure on (0, 1). Then π is identified as ψ(0)
and F (α) as ψ(0) +

∫
(0,α] ψ(θ)dθ. Then a reasonable estimate is obtained

by ψ̂(0)α/[ψ̂(0)α +
∫
(0,α] ψ̂(θ)dθ]. The computation is extremely fast and

the performance of the estimator is often comparable to that of the Bayes
estimator.

Since π takes the most important role in the expression for the pFDR
function, it is important to estimate π consistently. However, a conceptual
problem arises because π is not uniquely identifiable from the mixture rep-
resentation F (x) = πx+ (1− π)H(x), where H(·) is another c.d.f. on [0,1].
Note that the class of such distributions is weakly closed. The components
π and H can be identified by imposing the additional condition that H can-
not be represented as a mixture with another uniform component, which,
for the case when H has a continuous density h, translates into h(1) = 0.
Letting π(F ) be the largest possible value of π in the representation, it
follows that π(F ) upper bounds the actual proportion of null hypothesis
and hence the actual pFDR is bounded by pFDR(F ;α) := π(F )α/F (α).
This serves the purpose from a conservative point of view. The functional
π(F ) and the pFDR are upper semicontinuous with respect to the weak
topology in the sense that if Fn →w F , then lim supn→∞ π(Fn) ≤ π(F )
and lim supn→∞ pFDR(Fn;α) ≤ pFDR(F ;α).

Full identifiability of the components π and H in the mixture represen-
tation is possible under further restriction on F if H(x) has a continuous
density h with h(1) = 0 or the tail of H at 1 is bounded by C(1 − x)1+ε

for some C, ε > 0. The second option is particularly attractive since it also
yields continuity of the map taking F to π under the weak topology. Thus
posterior consistency of estimating F under the weak topology in this case
will imply consistency of estimating π and the pFDR function, uniformly
on compact subsets of (0, 1]. The class of distributions satisfying the lat-
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ter condition will be called B and D will stand for the class of continuous
decreasing densities on (0, 1].

Consider a prior Π for H supported in B ∩ D and independently a
prior µ for π with full support on [0, 1]. Let the true value of π and h be
respectively π0 and h0 where 0 < π0 < 1 and H0 ∈ B ∩ D. In order to
show posterior consistency under the weak topology, we apply Schwartz’s
result [55]. Clearly we need the true p-value density to be in the support
of the beta mixture prior. A density h happens to be a pointwise mixture
of be(a, b) with a < 1 and b ≥ 1 if H(e−y) or 1−H(1− e−y) is completely
monotone, that is, has all derivatives which are negative for odd orders and
positive for even orders. Since pointwise approximation is stronger than
L1-approximation by Scheffe’s theorem, densities pointwise approximated
by beta densities are in the L1-support of the prior in the sense that Π(h :
‖h − h0‖1 < ε) > 0 for all ε > 0. Because both the true and the random
mixture densities contain a uniform component, both densities are bounded
below. Then a relatively simple analysis shows that the Kullback–Leibler
divergence is essentially bounded by the L1-distance up to a logarithmic
term, and hence f0 = π0 + (1 − π0)h0 is in the Kullback–Leibler support
of the prior on f = π + (1 − π)h induced by Π and µ. Thus by the
consistency result discussed in Section 7.1 applies so that the posterior for
F is consistent under the weak topology. Hence under the tail restriction
on H described above, posterior consistency for π and pFDR follows. Even
if the tail restriction does not hold, a one-sided form of consistency, which
may be called “upper semi-consistency”, holds: For any ε > 0, Pr(π <

π0 + ε|X1, . . . , Xm) → 1 a.s. and that the posterior mean π̂m satisfies
lim supm→∞ π̂m ≤ π0 a.s.

Unfortunately, the latter has limited significance since typically one
would not like to underestimate the true π0 (and the pFDR) while overes-
timation is less serious. When the beta mixture prior is used on h with the
center measure of the Dirichlet process G0 supported in (0, 1)× (1 + ε,∞)
and h0 is in the L1-support of the Dirichlet mixture prior, then full poste-
rior consistency for estimating π and pFDR holds. Since the Kullback–
Leibler property is preserved under mixtures by Fubini’s theorem, the
result continues to hold even if the precision parameter of the Dirichlet
process is obtained from a prior and the center measure G0 contains
hyperparameters.
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7.3.2. Dependent case: Skew-normal mixture model for

probit p-values

Due to the lack of a suitable multivariate model for the joint distribution
of the p-values, most applications assume that the data associated with
the family of tests are independent. However, empirical evidence obtained
in many important applications such as fMRI, proteomics (two-dimensional
gel electrophoresis, mass-spectroscopy) and microarray analysis, shows that
the data associated with the different tests for multiple hypotheses are more
likely to be dependent. In an fMRI example, tests regarding the activa-
tion of different voxels are spatially correlated. In diffusion tensor imaging
problems, the diffusion directions are correlated and generate dependent
observations over a spatial grid. Hence, a grid-by-grid comparison of such
images across patient groups will generate several p-values that are highly
dependent.

The p-values, Xi, take values in the unit interval on which it is hard to
formulate a flexible multivariate model. It is advantageous to transform Xi

to a real-valued random variable Yi, through a strictly increasing smooth
mapping Ψ : [0, 1] → R. A natural choice for Ψ is the probit link func-
tion, Φ−1, the quantile function of the standard normal distribution. Let
Yi = Φ−1(Xi) be referred to as the probit p-values. We shall build flexible
nonparametric mixture models for the joint density of (Y1, . . . , Ym).

The most obvious choice of a kernel is an m-variate normal density.
Efron (cf. [17]) advocated in favor of this kernel. This can automatically
include the null component, which is the standard normal density after
the probit transformation of the uniform. However, the normal mixture
has a shortcoming. As in the previous subsection, marginal density of a
p-value is often decreasing. Thus the model on the probit p-values should
conform to this restriction whenever it is desired so. The transformed
version of a normal mixture is not decreasing for any choice of the mixing
distribution unless all components have variance exactly equal to one. This
prompts for a generalization of the normal kernel which still includes the
standard normal as a special case but can reproduce the decreasing shape of
the p-value density by choosing the mixing distribution appropriately. [44]
suggested using the multivariate skew-normal kernel as a generalization of
the normal kernel. The mixture of skew-normal distribution does provide
decreasing p-value densities for a large subset of parameter configurations.

To understand the point, it is useful to look at the unidimensional case.
Let

q(y;µ, ω, λ) = 2φ(y;µ, ω2)Φ(λω−1y)
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denote the skew-normal density (cf. [2]) with location parameter µ, scale
parameter ω and shape parameter λ, where φ(y;µ, ω2) denotes the N(µ, ω2)
density and Φ(·) denotes the standard normal c.d.f. The skew-normal family
has got a lot of recent attention due to its ability to naturally generalize
the normal family to incorporate skewness and form a much more flexible
class. The skewness of the distribution is controlled by λ and when λ = 0, it
reduces to the normal distribution. If Y has density q(y;µ, ω, λ), then [44]
showed that the density of X = Φ(Y ) is decreasing in 0 < x < 1 if and only
if

ω2 ≥ 1, λ >
√

(ω2 − 1)/ω2 and µ < λH∗(β1(ω2, λ)),

where β1(ω2, λ) = (ω2 − 1)/(λ2ω2), 0 ≤ β1 ≤ 1, H∗(β1) = inf
x

[H(x) −
β1x] and H(·) is the hazard function of the standard normal distribution.
Now, since the class of decreasing densities forms a convex set, it follows
that the decreasing nature of the density of the original p-value X will
be preserved even when a mixture of skew-normal density q(y;µ, ω, λ) is
considered, provided that the mixing measure K is supported on

{(µ, ω, λ) : µ ≤ m(β1(ω, λ)), ω ≥ 1, λ ≥
√

(ω2 − 1)/ω2}.

Location-shape mixtures of skew-normal family holding the scale fixed
at ω = 1 can be restricted to produce decreasing p-value densities if
the location parameter is negative and shape parameter is positive. For
scale-shape mixtures with the location parameter set to zero, the induced
p-value densities are decreasing if the mixing measure has support on
{(ω, λ) : ω ≥ 1, λ ≥

√
1− ω−2}. Location-scale mixtures with the shape

parameter set to zero is the same as location-scale mixtures of normal fam-
ily. It is clear from the characterization that the normal density is unable
to keep the shape restriction. This is the primary reason why we do not
work with normal mixtures.

By varying the location parameter µ and the scale parameter ω in the
mixture, we can generate all possible densities. The skew-normal kernel au-
tomatically incorporates skewness even before taking mixtures, and hence
it is expected to lead to a parsimonious mixture representation in presence
of skewness, commonly found in the target density. Therefore we can treat
the mixing measure K to be a distribution on µ and ω only and treat λ
as a hyperparameter. The nonparametric nature of K can be maintained
by putting a prior with large weak support, such as the Dirichlet process.
A recent result of [61] shows that nonparametric Bayesian density estima-
tion based on a skew-normal kernel is consistent under the weak topology,
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adding a strong justification for the use of this kernel. Interestingly, if the
theoretical standard normal null distribution is way off from the empirical
one, then one can incorporate this feature in the model by allowing K to
assign weights to skew-normal components stochastically larger than the
standard normal.

In the multidimensional case, [44] suggested replacing the univariate
skew-normal kernel by a multivariate analog. [3] introduced the multivariate
skew-normal density

SNm(y; µ,Ω,α) ≡ 2φm(y; µ,Ω)Φ(αTΩ−1(y − µ)),

where φm is the m-variate normal density. Somewhat more flexibility in
separating skewness and correlation is possible with the version of [45].

[44] considered a scale-shape mixture under restriction to illustrate the
capability of the skew-normal mixture model. Most commonly arising pro-
bit p-value densities can be well approximated by such mixtures. Analogous
analysis is possible with mixtures of location, scale and shape. Consider
an m×m correlation matrix R with possibly a very sparse structure. Let
ω = (ω1, . . . , ωm)T , α = (α1, . . . , αm)T and λ = (λ1, . . . , λm)T . Let Hi

denote the indicators that the ith null hypothesis Hi0 is false and let H =
(H1, . . . , Hm)T . Then a multivariate mixture model for Y = (Y1, . . . , Ym)T

is (Y |ω,λ,H,R) ∼ SNm(0;Ω,α) where Ω = ∆ωR∆ω, ∆ω = diag(ω) is
the diagonal matrix of scale parameters and α = R−1λ is the vector of
shape parameters. Let Hi be i.i.d. Bernoulli(1− π), and independently

(ωi, λi)|H ∼
{
δ1,0, if Hi = 0,

K0, if Hi = 1.

The skew-mixture model is particularly suitable for Bayesian estimation.
[44] described an algorithm for obtaining posterior samples. Using a result
from [3], one can represent Yi = ωiδi|U |+ ωi(1− δ2i )Vi, where δi = λi/(1 +
λ2
i ), U is standard normal and V = (V1, . . . , Vn)T is distributed as n-

variate normal with zero mean and dispersion matrix R independently of
U . This representation naturally lends itself to an iterative MCMC scheme.
The posterior sample for the parameters in R can be used to validate the
assumption of independence. Also, using the posterior samples it is possible
to predict the FDP.

It is not obvious how to formulate an analog of Newton’s esti-
mate for dependent observations, but we outline the sketch of a strat-
egy below. If the joint density under the model can be factorized as
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Y1|θ ∼ k1(Y1; θ), Y2|(Y1, θ) ∼ k2(Y2;Y1, θ), . . ., Ym|(X1, . . . , Ym−1, θ) ∼
km(Ym;Y1, . . . , Ym−1, θ), then the most natural extension would be to use

ψi(θ) = (1 − wi)ψi−1(θ) + wi
ki(Yi;Y1, . . . , Yi−1θ)ψi−1(θ)∫

ki(Yi;Y1, . . . , Yi−1, t)ψi−1(t)dν(t)
. (7.4)

Such factorizations are often available if the observations arise sequentially.
On the other hand, if m is small and (Yi|Yj , j = i) are simple, we may
use the kernel ki(yi|θ, yj , j = i). More generally, if the observations can be
associated with a decomposable graphical model, we can proceed by fixing
a perfect order of cliques and then reducing to the above two special cases
through the decomposition.

7.4. Areas of Application

Multiple testing procedures have gained increasing popularity in statisti-
cal research in view of their wide applicability in biomedical applications.
Microarray experiments epitomize the applicability of multiple testing pro-
cedures because in microarray we are faced with a severe multiplicity prob-
lem where the error rapidly accumulates as one tests for significance over
thousands of gene locations. We illustrate this point using a dataset ob-
tained from the National Center for Biotechnology Information (NCBI)
database. The data comes from an analysis of isografted kidneys from
brain dead donors. Brain death in donors triggers inflammatory events in
recipients after kidney transplantation. Inbred male Lewis rats were used
in the experiment as both donors and recipients, with the experimental
group receiving kidneys from brain dead donors and the control group re-
ceiving kidneys from living donors. Gene expression profiles of isografts
from brain dead donors and grafts from living donors were compared us-
ing a high-density oligonucleotide microarray that contained approximately
25,000 genes. [6] analyzed this dataset using a finite skew-mixture model
where the mixing measure is supported on only a finite set of parameter
values. Due to the high multiplicity of the experiment, even for a single
step procedure with a very small α, the FDR can be quite large. [6] es-
timated that the pFDR for testing for the difference between brain dead
donors and living donors at each of the 25,000 gene locations at a fixed
level α = 0.0075 is about 0.2. The mixture model framework also naturally
provides estimates of effect size among the false null. While [6] looked at
one sided t-test at each location to generate the p-values, they constructed
the histogram of the 25,000 p-values generated from two-sided tests. The
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left panel of Figure 7.1 gives a default MATLAB kernel-smoother estimate
of the observed p-value histogram. The density shows a general decreas-
ing shape except for local variation and at the edges. The spikes at the
edges are artifacts of the smoothing mechanism. The bumpy nature of the
smoothed histogram motivates a mixture approach to modeling. The his-
togram in the probit scale is shown as the jagged line in the right panel in
Figure 7.1. The smoothed curve is an estimate of the probit p-value density
based on a skew-normal mixture model. Empirical investigation reveals the
possibility of correlation among the gene locations. Thus, the multivariate
skew-normal mixture would yield more realistic results by incorporating
flexible dependence structure.

Fig. 7.1. Density of p-values obtained from the ratdata: original scale (left) and probit
scale (right).

Another important application area of the FDR control procedure is
fMRI. In fMRI data, one is interested in testing for brain activation in
thousands of brain voxels simultaneously. In a typical experiment designed
to determine the effect of covariate (say a drug or a disease status) on brain
activation during a specific task (say eye movement), the available subjects
will be divided into the treatment group (individual taking the drug or hav-
ing a particular disease) and the control group (individuals taking a placebo
or not having a disease) and their brain activation (blood oxygen level de-
pendent signal) will be recorded at each voxel in a three dimensional grid in
the brain. Then for each of the thousands of voxels, the responses for the in-
dividuals in both groups are recorded and then two sample tests are carried
out voxel-by-voxel to determine the voxels with significant signal difference
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Fig. 7.2. fMRI slice activation image before and after FDR control.

across groups. However due to severe multiplicity, too many voxels may be
declared as significant discoveries. Many of these voxels can be adjudged
unimportant based on physiological knowledge, but still many others may
remain as potential discoveries. The left panel of Figure 7.2 shows the vox-
els discovered as significant in a particular slice of the brain in a typical
fMRI study (the details of the study are not given due to confidentiality
issues, the figure is just used for illustration). The stand alone voxels with
differential activation are potentially false discoveries where the contiguous
clusters of voxels with significant activation pattern are potentially more
meaningful findings. However, one needs to use statistical procedures to
determine this as there will be tens of thousands of voxels and determining
the validity of the findings manually is an infeasible task and a source of
potential subjective bias. FDR control has been advocated by [23] to con-
trol for false discoveries in fMRI experiments. An application of the B-H
procedure removes most of the voxels as false discoveries while keeping only
a few with strong signal difference among the two groups. Thus the B-H
procedure for this application turns out to be very conservative, and con-
flicts with scientific goal of finding anatomically rich activation patterns.
An FDR control procedure that takes the dependence among voxels into
account will be be more appropriate for this application. Work is underway
to evaluate the merits of the dependent skew-mixture procedure in a typical
fMRI dataset.

[6] also gave an illustration of the pitfalls of constraining the p-value
model to have a theoretical null component. In their example, the null com-
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ponents were made up of two components, one which is slightly stochas-
tically smaller than the theoretical null and the other which is slightly
bigger. With a single theoretical null distribution fitted to the data, both
components were poorly estimated while the unconstrained fit with no pre-
specified theoretical null distribution gave an adequate approximation of
both components.

Of course the applicability of multiple testing procedures is not re-
stricted to biomedical problems. While the biomedical problems have been
the primary motivation for developing false discovery control procedures,
FDR control procedures are equally important in other fields, such as as-
tronomy, where one may be interested in testing significance of findings of
several celestial bodies simultaneously. There are important applications
in reliability, meteorology and other disciplines as well.
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