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EXTENSIONS OF THE STRONG LAW OF
LARGE NUMBERS OF MARCINKIEWICZ
AND ZYGMUND FOR DEPENDENT
VARIABLES

T. K. CHANDRA and S. GHOSAL (Calcutta)

The classical strong law of large numbers (SLLN) due to Kolmogorov
has been extended recently to various weakly dependent random variables
(rvs) which are not necessarily identically distributed. It is natural to en-
quire whether the SLLN of Marcinkiewicz and Zygmund (MZSLLN) (see
Theorem 3.2.3 of Stout [11]) holds under similar relaxed conditions. In this
paper, we try to fill this gap and show that this weakening is indeed possi-
ble; the independence assumption is relaxed to @-mizing or asymptotically
almost negatively associated sequences defined below. Related results are
established for asymptotically quadrant sub-independent (AQSI) sequences
(see Definition 1). These concepts are interesting as they unify, to some ex-
tent, the notion of mixing-type sequences and that of negatively dependent
sequences.

In contrast to the usual proofs of the MZSLLN (see, e.g., Stout [11] and
Chow and Teicher [5]), our proofs use mazimal inequalities at a crucial step.
We are thus able to relax mutual independence to a great extent, and the as-
sumption of identical distribution is also relaxed considerably. This technique
is likely to be useful for other dependences also, provided suitable maximal
inequalities are available under those dependences.

DEFINITION 1. A sequence {X,} of rvs is called asymptotically quadrant

sub-independent (AQSI) if there exists a nonnegative sequence {g(m)} such
that for all { # j,

P{Xi > s, X; >t} = P{X; > s}P{X; >t} < q(|i = j]) aij(s,1), 8,1 > 0,
P{X; < s,X; <t} — P{X; < s}P{X; < t} < q(]i - j|) Bij(s,1),8,t <O,

where g(m) — 0 and a;;(s,t) 2 0, Bi;(s,t) 2 0.

Note that pairwise negative quadrant dependent, pairwise m-dependent
and AQI rvs (introduced by Birkel [2]; see Definition 2 below) are special
cases of AQST rvs.

DEFINITION 2. A sequence {X,} of rvs is called asymptotically quadrant
independent (AQI) if there exists a nonnegative sequence { ¢(m)} such that

for all z # j and s,t € R,
| P{X; > 5, X; >t} - P{X; > s}P{X; > t} < q(li - j]) aij(s. 1),

0236-5294/96/85.00 © 1996 Akadémiai Kiads, Budapest



328 T. K. CHANDRA and S. GHOSAL
| P{X; < 5, X; <t} = P{X; < s}P{X; < t}| £ q(li - 1) Bi;(s,1),

where g(m) — 0 and ;;(s,t) 2 0, 3i;(s,t) 2 0.

For a sequence {X,} of rvs, put S, = 37, X;, n 2 1; also, define G(y)
= sup,>; n 7 Yro, P{|Xk| > y}. Finally, C will stand for a generic con-
stant. ~

Our proof of MZSLLN needs that the sequence {X,} should satisfy a de-
pendence condition which is well behaved in the sense that it admits a max-
imal inequality for the truncated rvs. Matula [8] has recently established a
maximal inequality for negatively associated (NA) sequences; consequently
this allows us to extend MZSLLN from independent to NA sequences. Re-
call that a sequence {X,} is called NA if for every finite disjoint subsets
A,B C {1,2,...}, and coordinatewise increasing functions f: R* — R and
g:RE =R, cov(f(X;:i€ A),g(X;:i€ B)) <0, whenever it exists. By
inspecting the proof of Matula’s [2] maximal inequality, we shall see that
one can also allow positive correlations provided they are small. Primarily
motivated by this, we introduce the following dependence condition:

DEFINITION 3. A sequence {X,} of rvs is called asymptotically almost
negatively associated (AANA) if there is a nonnegative sequence g(m) — 0
such that

(1) cov (f(Xm), 9(Xmsts- s Xmk))

< g(m) (var (£(Xm)) var (¢(Xma1s- -, Xmar)) )/

for all m,k = 1 and for all coordinatewise increasing continuous functions f
and g whenever the right side of (1) is finite.

The family of AANA sequences contains NA (in particular, indepen-
dent) sequences and some more sequences of rvs which are not much devi-
ated from being negatively associated. Condition (1) is clearly satisfied if
the Rj s-measure of dependence (see Bradley et al. [1]) between o(X,,) and
0{Xm+1, Xm+2,...) converges to zero. The following is a non-trivial exam-
ple of an AANA sequence. It is possible to construct similar examples, but
we shall not discuss this topic any more here.

ExaMpLE. Let {Y,} be ii.d. N(0,1) variables and define X, = (1
+ a%)_l/?(Yn + @, Y,+1) where a,, > 0 and a,, — 0. Note that {X,} is not NA
(indeed, is associated and 1-dependent). We shall show that the correlation
coefficient between U := f(X,,) and V := ¢(Xm+1,..., Xm+k) is dominated
in absolute value by a,,. It suffices to prove this under the additional hy-
potheses EU =0 = EV, EU? =1 = EV?. Then

( cov (U, V) ’< (cov (U, E(U\ X i1y Xomtk)) )2
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= B(E(U|Xmtts - > Xmrk)* S E(E(UYmp1, -, Ymaks1))

= p(pWNn) = [ ([ st (B2 )¢(x>dx)2¢(y)dy

where t,,(z,y) is the conditional density of X,, given Y41 = y and ¢(2) is
the density of N(0,1). By Cauchy-Schwarz inequality, the last integral is at

" / / ( - 1)2@'@)(& oy)dy = a?,.

THEOREM 1. Let X;.. ...)&n be mean zero, square integrable rvs such
that (1) holds for 1 £ m < k + m < n and for all coordinatewise increasing
continuous functions f and g whenever the right side of (1) is finite. Let

A2 =51 2(m) and 0} = EXZ k2 1. Then

@) P{f?kaé‘nigkp b <27 (44 (14 A2 1/2) Z

ProoF. The proof is based on certain ideas of Matula (8]. Clearly,

> < > - >
Pl isizep < Pl ma size) o+ p{m 8 2 <)
Set T} = max( Xk, Xg + Xeg1,-. -, Xe+--+Xn), 1 £k < n. We have T},
= X; + T,;*'_H and consequently ETZ £ of + ET,H_1 + 2¢q(k)or( ET, +1)1/2
1<k <n—1. Define {&} by &) = o and & = of + &1, + 2q(k)oxbi1,
1<k <n—1. Clearly, ET? £ £ and {£;} is decreasing, whence ¢} < o2

+ £k+1 +2q(k)oe&y, 1 £ k £ n— 1. Substituting sequentially and using the
Cauchy-Schwarz inequality, we get

n n—1
P> ok 426 ) qlk)op S v 426 A7
k=1 k=1

where 72 = 3°7_ a?. Hence (£ — A7)? £ 72(1 4+ A?), which implies that
ET2< e <72(A+(1+ A)Y?)? and so (2) follows. O

REMARK 1. Theorem 1 extends Lemma 4 of Matula [8]. The proof of
Theorem 3 of Matula [8] can be used to show that his Theorem 3 and its

corollary remain true if the assumption of “negatively associated rvs” is re-
laxed to “AANA rvs with Y 72, ¢%(k) < 00”.

The following result will be used in the sequel.
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LemMMmA 1. Let {X,} be any sequence of rvs satisfying

(3)/ v G(y)dy < o, ZP{lel”>k}<°° for some 0 < p < 2.
k=1

Then
(a) 02, k2P (X,fI{|Xk|” < k}) < o0,

0) T b YVPE(IXRI{IXkP Sk}) <o if O0<p<],
a1l SR (lelI{]Xkl” >k})—0 if 1<p<2

(¢) T2, 272 2 B (XH{|X,P S k}) < oo,
(d) 2:;1 2-2n/p k:l kz/pp{ IXklp > k‘} < 0.

Proor. (a) The given expression is dominated by

C i ir?/f’—lfj (XZI{|X,P S k})

k=1 j=k
ki/p
§CZZJ'2/” ’/ yP{IX > y} dy
k=1 3=k
oo J
=CY > i ”plZ/ ,yP{iXkl>y}dy
7=1 k=1
w0 g it ;
—S-szj’z/”/ y(j_lZP{IXk|>y}> dy
7=1 n=1 (n"l)l/p k=1
o X nifp ) ni/p
ey [ wewaysey [T G ay
n=1j=n (n-1)!/7 ne1 (n—1)}/?
o0 nl/p

ey [ vlewdy< .

n=1 (n—l)l/p

(b) The proof of (b), in the case 0 < p < 1, is similar to that of (a). Now
let 1 <p<2andfix N2 1. Forn > N, we have

w3 E (XTI > 5

k=1
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~n'1/”2/ P{]in>y}dy+n 1/p E / P{}Xk|>y}dy

k=N+1

+a PN EYPP{| Xk > k)
k=1

Obviously, the first term on the right side goes to 0 as n — oo; the third
term converges to 0 by (3) and Kronecker’s lemma. Finally, the second term
is at most

/p

nl/P Z Z/ ! P{|Xi| > y} dy

k=N j=k

(+1)H/r minlin)

< p~lp Z/ Z P{|Xk| >y} dy

(p-1)+1 [P
<nVr Z ((CminGg,m) )™ [ Gy
e
o0 J+1)1/P
< Z Y 1G(y)dy —0 as N — oo.
=N

Part (c) follows from (a) and an interchange of summation signs. Part
(d) follows similarly. O

REMARK 2. The condition in (3) is obviously satisfied if {|X,|} is sto-
chastically dominated by a rv X with EXP < oc.

REMARK 3. If 0 < p< 1 and (3) holds, then 332, k77| Xy| < oo a.s.;
hence the MZSLLN holds irrespective of any dependence condition. To see
this, note that it is enough to verify that

oo
Y=Y ETVPIXI{ X Sk} < 00 as
k=1

this is true, since EY < co by Lemma 1(b) and the monotone convergence
theorem.

Henceforth we shall assume 1 S p< 2 and EX, =0 for all n.

Acte Mathematica Hungarica 71, 1996



332 T. K. CHANDRA and S. GHOSAL
LEMMA 2. Let {Xn} be a sequence of rvs satisfying (3) and define
Y, = Xod{|X,| < 0P} 4 2MP1{X, > n}/Py - nl/PI{X, < —nM/?}, n21.

Assume that there exists K such that
n n
var (ZYk> <K Z(l + EY?) foralln21.
k=1 k=1

Then

2“
9~n/r Z(Yk -EY) -0 as
k=1

Proor. This follows because Yooy 2-2n/p yar (Eill Yk> is at most

00 2"
K)oy (1 + E(XFT{|XkP S k}) + E¥PP{| X" > k}) < 00,
n=1 k=1

by Lemma 1(c) and (d). O
REMARK 4. Lemma 2 also holds if Y, is redefined as X, J/{|X,|” S n}.
THEOREM 2. Let {X,} be an AANA sequence satisfying (3) and let
B? = 5°%_ ¢*(m) < oo. Then n~1/?5, — 0 a.s.

m=1
PROOF. Define Y,, as in Lemma 2 and put U, =Y, — EY,, T, = T'(n)

= Sr_, Ur. It suffices to show that n=Y/?T, — 0 a.s. Clearly, {U,} is also
AANA with the same ¢(-). So

ET? € EUZ + ET?, + 2¢(k)(EVRETE ), 2<k <.
Proceeding as in the last part of the proof of Theorem 1, we get
2 n
BT < (B+(1+BY)') Y EUL
k=1

Therefore, Lemma 2 yields that 2="/?T(2") — 0 a.s. For each m, let n = n,,
be such that 2" <m < 27tl, It remains to show that Z,,

= m~1/r 2imonp1 Ui = 0 a.s. The proof is therefore complete, since by The-
orem 1 and Lemma 1(c),(d),

(4) Z P{max(|Z,]|:2" £ m < 2" > ¢} < . m

n=1
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We now recall some definitions involving mixing concepts.

DEerINITION 4. For two sub o-fields F and G of a probability space
(Q. A. P). define

A F.G)=sup{|P(G|F) - P(G)| : F € F,G € G,P(F)> 0},
al F.G)=sup{|P(FNG) - P(F)P(G)| : FEF,GeG},

P(FNG)

vIF.G)= Sup{‘P(F)P(G) -

1’ :FeF,GeG,P(F)P(G) > O} .
For a stochastic sequence {Xn} < o0 let F* be the o-field generated
by {X......Xn},n € m. We define

¥m = SUp ‘r:(}-inafgi:r?)v Om = Supa(flna}dgi;?)a fm = sup w( {L’ﬁinzl .
" n n

The sequence {X,} is called p-mixing (respectively, a-mixing or *-mixing)
if ., — 0 (respectively, a,, — 0 or f,, — 0) as m — oo.

THEOREM 3. Assume that {X,} is @-mizing with > .2, 80}1/2 < 0o and

that (3) holds. Then n~Y?S, — 0 a.s.

ProOF. We use the terminologies of McLeish [9]. Define Y, = XnI{ | X P
Sn}. As {p,} is trivially of size —1, Theorem 2.7 of McLeish [9] implies
that the U, := Y, — EY, form an L?-mizingale (difference) sequence with i,
=l e = |Ull, and {0} is of size —1/2. (We need the mizing condition
to deduce only this fact.) Also, for i < j

EUU; = E(UE(U;|Us,..., U3)) £ $-illUil|,[1U5];-

By straightforward arguments (see, e.g., Lemma 1 of Chandra [3]) and Re-

mark 4, it follows that 2-%/? 2211 Ur — 0 a.s. Rest of the proof is completed
as in Theorem 2 by appealing to the maximal inequality of McLeish [9]. O

An important example where Theorem 3 can be applied is a stationary
Markov sequence satisfying Doeblin’s condition; see, e.g., Doob ([6], Ch. 5)
and Rosenblatt ({10], Ch. 7).

THEOREM 4. Assume that {X,} is AQSI with 3°7_, q(m) < o0, and for
all i # j

e pilp
/0 /0 a;ij(s,t)dsdt £ D(1+ EY? + EYf’),
(5)
jip L1l
/ / Bij(s,t)dsdt £ D(1 + EY? + EY})
0 0
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where {Y,} 1s as in Lemma 2 and D is a constant, and that (3) holds. Then
n=YP(logn)"'S, — 0 a.s.

Proor. Clearly, {Y,} forms an AQSI sequence. Now by Lemma 2
of Lehmann (7] cov (Y;*,Y;*) £ Dq(li - jl) (1 + EY? + EY}); so, as in the
proof of Theorem 3, var ( — Yi+) SCYM (1+ EY?) for all n. Similarly,
var (£, ¥;7) € C Ty (14 EY) for all n. Thus

n

var (iY,) < 2var(i}’i+) +2var(ZYi‘) < C’i(l-,t-EYf)

=1 i=1 =1

for all n. Hence Lemma 2 implies that 2~"/? Ei;l Ur — 0 a.s. where Uy,

=Y, — EY,. Consider the variable Z, = m~/?P(logm)™! 7 ;. U; where

n = Ny is as in the proof of Theorem 2. Thus it remains to verify (4) (with
Zp, replaced by Z),). Now the left side of (4) is dominated by

2n+l

2D i q(k) i (n+ 3)%27"/7(nlog2)™ Y (1+ EYY?)

k=1 n=1 k=2"41

2n+1

<cC iz-"’"/P Y (1+ EY?) < oo
n=1

i=1

(by Lemma 3 below and Lemma 1(¢) and (d)). O

LeMMA 3. Let Xy,...,X, be square integrable rvs and let there ez-
ista?,...,al satisfying E(Xme1 + 4 Xmap) S aZ i+ taky, forall
m,p 2 1, m+ p < n. Then we have

k 9 n
E( I=na=x (ZX,—) ) < ((logn/log3)+2)22a?.

This is an extension of the well-known Rademacher-Mensov inequality;
a proof can be found in Chandra and Ghosal ([4], Theorem 10).
One can now guess that the following variation of Theorem 4 is true.
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THEOREM 5. Assume that {X,} is AQSI with 3 °_, q(m) < o0, (5)
holds and that

0

(6) / ¥ logy)’G(y)dy < o0, Y (logn)*P{|Xnl” > n} < co.
0 n=1
Then n=/?S, — 0 a.s.

Proovr. Define Y;, as in Theorem 4 and proceed as in its proof. It, there-
n+1 .
fore, remains to show that y ~, n?g=n/p i=2n+1 EU,? < o0. In fact, as in

Lemma 1, we have

f} kP (log k)2 E (XFI{| XxlP £ k})

k=1
o0
<y 1og]>22/ BRZOL
J:
0 nl/p
< ¢S nt2/P(logn)? /( iy YWy < 20
n=1 -

since y1~2/P(log y)? is eventually decreasing. O

ReMarK 5. If in Theorem 5 we have pairwise independence in place of
AQSI, then the second part of (6) can be relaxed to the second part of (3)
since we can then redefine Y, as XnI{ [ Xal|P £ n}

REMARK 6. The following is a sufficient condition for (5): For all z # 7,
P{X;>s,X;>t} S (1+q(li-7])) P{Xi> s}P{X; > t}, s,1>0
P{Xi<s,Xj<t} S (1+q(li—j])) P{Xi < s}P{X; < t}, s,t<0,

and y,-_; g(m) < co. This condition is much weaker than demanding that
{X,} is *-mixing with coefficients {g(m)}. Another sufficient condition for
(5) can be obtained by modifying Example 1 of Birkel [2]: Let {X,} be o-
mixing with the coefficient a(m) and let 1 < p,r < co with 2/p+1/r =1 be
such that 3 o, a(m)!? < oo, SUP;>; E|Xi|* < oo for some k > p. Then (5)
holds with Birkel’s [2] choices of g(m), a;;(s,t), Bi;(s,t) and ¢ = p

REMARK 7. It will be of some interest to investigate whether the “log
terms” are really necessary in Theorems 4 and 35, at least for pairwise inde-
pendent rvs.
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