EXAMPLE

Generate data as in first example from paper

library(mvtnorm)

n = 30
p = 4
n.true = 2
beta = c(rep(1,n.true),rep(0,p-n.true))
times = 1:p
rho = 0.9
sigma = 1
H = abs(outer(times, times, "-"))
V = sigma * rho^H
X = rmvnorm(n,rep(0,p),V)
y = X%*%beta+rnorm(n)

Estimate both lambda and pi (called weight) via marginal likelihood

optimized.values = full.marginal.opt(X, y)

Compute and display posterior probabilities for each model using the optimal pair.

post.probs(X, y, lambda=optimized.values$opt.lambda, weight=optimized.values$opt.weight)

Note that this full optimization can take a long time for many problems
May wish to only search over a small set of possible lambdas by using
the function "fixed.lambda.opt" as demonstrated below.

Fix lambda at two values (1.5 and -1) and find optimal weight for each.
Compute and display posterior probabilities for these choices

optimized.weight.1.5 = fixed.lambda.opt(X, y, lambda=1.5)
optimized.weight.neg.1 = fixed.lambda.opt(X, y, lambda=-1)
post.probs(X, y, lambda=1.5, weight=optimized.weight.1.5$opt.weight)
post.probs(X, y, lambda=-1, weight=optimized.weight.neg.1$opt.weight)

Can compare marginal log-likelihoods by using "optimized.weight.1.5$opt.value"
Note larger (less negative) is better.

REFERENCE

post.probs *Function to compute the posterior probabilities for all models, for a given set of power parameter and prior weight.*

USAGE

post.probs (X, y, lambda, weight, vo=.01)

ARGUMENTS

X Design matrix, not including intercept. The columns should have mean zero and sum of squares 1. If not, the code will standardize the design and the output is based on this standardized design.

y Vector of responses. Should have mean zero, so that intercept is zero.

lambda Specified value of power parameter.

weight Specified value of prior inclusion weights (denoted by \(\pi \) in the paper).

vo Specified value for inverse gamma prior. Default is 0.01.

VALUE

post.prob Exact posterior probabilities for each of the models.

models List of the models using vector of 0/1 to indicate whether each predictor is out/in the model. A 1 denotes that the variable in that position is included in that model.

log.marginal Value of the marginal log-likelihood for the specified values of the power parameter and prior weight.

lambda Power parameter used.

weight Prior weight used.
fixed.lambda.opt Function to obtain the optimal prior weight for a fixed value of the power parameter via empirical Bayes. Also allows for comparisons across lambdas to find best lambda over a chosen grid.

USAGE

fixed.lambda.opt (X, y, lambda, vo=.01)

ARGUMENTS

- **X** Design matrix, not including intercept. The columns should have mean zero and sum of squares 1. If not, the code will standardize the design and the output is based on this standardized design.

- **y** Vector of responses. Should have mean zero, so that intercept is zero.

- **lambda** Specified value of power parameter.

- **vo** Specified value for inverse gamma prior. Default is 0.01.

VALUE

- **opt.weight** Optimal choice of prior weight via maximizing log-marginal for this choice of lambda.

- **opt.value** Value of log-marginal obtained. Can be used to compare various values for lambda (larger/less-negative is better).
full.marginal.opt
Function to obtain the optimal pair of power parameter and prior weight via empirical Bayes. This can take quite some time depending on the problem.

USAGE

`full.marginal.opt (X, y, lambda.bounds=c(-3,3), vo=.01)`

ARGUMENTS

- **X**
 Design matrix, not including intercept. The columns should have mean zero and sum of squares 1. If not, the code will standardize the design and the output is based on this standardized design.

- **y**
 Vector of responses. Should have mean zero, so that intercept is zero.

- **lambda.bounds**
 Lower and upper bounds for choice of lambda. Default is -3 to 3.

- **vo**
 Specified value for inverse gamma prior. Default is 0.01.

VALUE

- **opt.lambda**
 Optimal choice of lambda via jointly maximizing log-marginal.

- **opt.weight**
 Optimal choice of prior weight via jointly maximizing log-marginal.

- **opt.value**
 Value of log-marginal obtained.